Patents by Inventor Michael J. Zipparo

Michael J. Zipparo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230380800
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 30, 2023
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Patent number: 11660067
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: May 30, 2023
    Assignee: PERCEPTIVE NAVIGATION LLC
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Publication number: 20210236087
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 5, 2021
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Patent number: 10945704
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 16, 2021
    Assignee: PERCEPTIVE NAVIGATION LLC
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Patent number: 10945703
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 16, 2021
    Assignee: PERCEPTIVE NAVIGATION LLC
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Patent number: 10772600
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: September 15, 2020
    Assignee: PERCEPTIVE NAVIGATION LLC
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Publication number: 20190142373
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Publication number: 20190142371
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Publication number: 20180116630
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound or optical coherence tomography imaging system that is replaceable depending on how close the device is to the target site for a given medical procedure, the device and system integrated into a single minimally invasive device comprising a first probe housing, needle guide assembly and sheath, a sleeve lock for closing a normally open needle channel of a needle guide of the first distal assembly and a second probe and cable housing assembly locked to the first distal probe housing, needle guide assembly and sheath by a locking tab. The probe and cable housing assembly may comprise a linear phased ultrasound array and an accelerometer for orienting an image produced by the device with the gravitational field of the earth. The medical device can be in the form of an image guided catheter or probe, used in a body orifice, externally on skin tissue or subcutaneously.
    Type: Application
    Filed: December 18, 2017
    Publication date: May 3, 2018
    Inventors: Christopher Allen Dykes, Michael J. Zipparo, Theodore P. Abraham
  • Patent number: 8556030
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 15, 2013
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Publication number: 20110198151
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Patent number: 7956514
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 7, 2011
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Patent number: 7808157
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 5, 2010
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Publication number: 20080243001
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Publication number: 20080242984
    Abstract: Improved acoustic attenuation materials and applications are provided. An improved acoustic attenuation material may include a woven layer of fibers made of porous polymers, such as porous polytetrafluoroethylene (PTFE), that include interstitial space. An improved acoustic attenuation material may include sheets of porous polymers interleaved with layers of epoxy. The sheets of porous polymers may include through holes. An embodiment of an ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers is provided. The ultrasonic transducer that includes a backing with woven layers of porous PTFE fibers may be used in a three-dimensional ultrasound imaging apparatus. An embodiment of an ultrasonic transducer that includes a plurality of sheets of porous PTFE interleaved with layers of epoxy is provided. The ultrasonic transducer that includes a plurality of sheets of porous PTFE may be used in an ultrasonic imaging catheter.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Clyde Gerald Oakley, Michael J. Shepard, Michael J. Zipparo, Hermann Scholz
  • Patent number: 7249513
    Abstract: An improved ultrasound probe includes a support member, a signal cable having a plurality of electrically conductive members and an ultrasound transducer array. Distal end portions of each of the conductive members may be separately embodied within and extend through the support member to a first side thereof. In turn, the ultrasound transducer array may be supportably mounted to the first side of the support member, wherein transducer elements comprising the ultrasound transducer array are electrically interconnected to different ones of the electrically conductive members. The support member preferably includes an acoustic dampening material. In one embodiment, the ultrasound transducer array may be defined by a piezoelectric layer having electrically conductive signal and ground layers on opposing sides thereof.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: July 31, 2007
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Michael J. Zipparo, Monica P. Johnson
  • Patent number: 5947905
    Abstract: An ultrasound transducer array probe for intraluminal ultrasound imaging is situated on a distal end of a catheter. The probe has a flex circuit that accepts terminations from a plurality of coaxial cables admitted through the catheter, and electrically conveys these signals to integrated circuits and an ultrasound array acoustic stack, preferably having seventy-two elements. The circuit has more than one layer of metal tracings to support complicated electrical interconnections. The acoustic stack preferably includes two quarter-wave matching layers and an acoustic backing layer composed of urethane, AIN.sub.3, tungsten trioxide, and micro-balloons. The flex circuit can be formed of two sections that are joined during manufacture.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: September 7, 1999
    Assignee: Advanced Coronary Intervention, Inc.
    Inventors: Andreas Hadjicostis, Michael J. Zipparo, Lanette P. Westwood