Patents by Inventor Michael James Winningham

Michael James Winningham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9534062
    Abstract: An improved process for synthesizing acrylic polymers, which is highly controllable to achieve high molecular weight, high conversion rate, and low polydispersity involves continuously introducing initiator(s), acrylic monomer(s), and optionally other monomers capable of polymerizing with the acrylic monomer(s), into a microchannel of a microreactor having an integral micromixer and an integral heat exchanger.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: January 3, 2017
    Assignee: Corning Incorporated
    Inventors: Mingqian He, Clemens Rudolf Horn, Jieyu Hu, Patrick Jean, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Patent number: 9505655
    Abstract: A coating composition including a reinforcing agent. The coating composition may include one or more radiation-curable monofunctional monomers, one or more radiation-curable multifunctional monomers or oligomers, a photoinitiator, and a reinforcing agent. The monofunctional monomers, multifunctional monomers, and multifunctional oligomers may include acrylate groups. The reinforcing agent may be an acrylic co-polymer that includes two or more repeat units. At least one of the repeat units includes chemical groups that enable self-association of the acrylic co-polymer. Self-association of the acrylic co-polymer may improve the tensile strength of coatings formed from the coating compositions.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 29, 2016
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Michelle Dawn Fabian, Kevin Robert McCarthy, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Publication number: 20160002367
    Abstract: An improved process for synthesizing acrylic polymers, which is highly controllable to achieve high molecular weight, high conversion rate, and low polydispersity involves continuously introducing initiator(s), acrylic monomer(s), and optionally other monomers capable of polymerizing with the acrylic monomer(s), into a microchannel of a microreactor having an integral micromixer and an integral heat exchanger.
    Type: Application
    Filed: May 26, 2015
    Publication date: January 7, 2016
    Inventors: Mingqian He, Clemens Rudolf Horn, Jieyu Hu, Patrick Jean, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Patent number: 9128245
    Abstract: A low cost composition that cures rapidly and which is suitable for coating an optical fiber comprises at least one ethylenically unsaturated monomer; at least one photoinitiator; and at least one non-radiation-curable polar polymer having pendent groups that facilitate low energy chemical bonding, hydrogen bonding, dipolar interactions or other interactions with radical compounds formed during polymerization of the monomer. The non-radiation-curable polar polymer(s) are inexpensive and reduce and/or eliminate the need for expensive urethane acrylate oligomers, without sacrificing properties, and while achieving rapid cure speeds.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: September 8, 2015
    Assignee: Corning Incorporated
    Inventors: Michelle Dawn Fabian, Kevin Robert McCarthy, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Publication number: 20140341524
    Abstract: A coating composition including a reinforcing agent. The coating composition may include one or more radiation-curable monofunctional monomers, one or more radiation-curable multifunctional monomers or oligomers, a photoinitiator, and a reinforcing agent. The monofunctional monomers, multifunctional monomers, and multifunctional oligomers may include acrylate groups. The reinforcing agent may be an acrylic co-polymer that includes two or more repeat units. At least one of the repeat units includes chemical groups that enable self-association of the acrylic co-polymer. Self-association of the acrylic co-polymer may improve the tensile strength of coatings formed from the coating compositions.
    Type: Application
    Filed: April 9, 2014
    Publication date: November 20, 2014
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Michelle Dawn Fabian, Kevin Robert McCarthy, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Publication number: 20140341521
    Abstract: A low cost composition that cures rapidly and which is suitable for coating an optical fiber comprises at least one ethylenically unsaturated monomer; at least one photoinitiator; and at least one non-radiation-curable polar polymer having pendent groups that facilitate low energy chemical bonding, hydrogen bonding, dipolar interactions or other interactions with radical compounds formed during polymerization of the monomer. The non-radiation-curable polar polymer(s) are inexpensive and reduce and/or eliminate the need for expensive urethane acrylate oligomers, without sacrificing properties, and while achieving rapid cure speeds.
    Type: Application
    Filed: April 9, 2014
    Publication date: November 20, 2014
    Applicant: Corning Incorporated
    Inventors: Michelle Dawn Fabian, Kevin Robert McCarthy, Weijun Niu, David Neal Schissel, Michael James Winningham
  • Patent number: 7923483
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Patent number: 7423105
    Abstract: A curable composition for coating an optical fiber that includes an aliphatic-aromatic oxyglycidyl(meth)acrylate monomeric component, an aliphatic-(hetero)cyclic oxyglycidyl(meth)acrylate monomeric component, or a combination thereof, and an ethylenically unsaturated urethane or urea oligomeric component. Cured products of the composition and optical fibers that contain cured primary coatings formed from such compositions are also disclosed. The resulting optical fibers and optical fiber ribbons containing them can be used for data transmission in telecommunications systems.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 9, 2008
    Assignee: Corning Incorporated
    Inventor: Michael James Winningham
  • Patent number: 7289706
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 30, 2007
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Patent number: 7257299
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 14, 2007
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham