Patents by Inventor Michael Jankowski

Michael Jankowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898828
    Abstract: A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 13, 2024
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Anthony Opperman, Gerard Skebe
  • Patent number: 11889190
    Abstract: The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: January 30, 2024
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Douglas E. Russell
  • Patent number: 11754399
    Abstract: Systems and methods for providing location and guidance are herein described, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The systems and methods herein utilize inertial measurement units (IMUs) to provide such location and guidance. More particularly, the systems and methods herein utilize a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: September 12, 2023
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 11692828
    Abstract: Presented herein are systems and methods using inertial measurement units (IMUs) for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments), and for such location and guidance being provided to projectiles, munitions, or rounds that are released, fired, or deployed from vehicles or weapons systems. More particularly, this disclosure relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results. This further relates to an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: July 4, 2023
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 11509828
    Abstract: The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: November 22, 2022
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Douglas E. Russell
  • Patent number: 11150062
    Abstract: The present invention relates to the control of munitions, missiles and projectiles, in flight. The present invention further relates to systems and methods for control of munitions, missiles and projectiles in flight with the use of activatable or deployable flow effectors that remain stowed or inactive during launch or firing, and can be actuated after launch or firing on demand. More specifically, the present invention relates to systems and methods for control of munitions, missiles, and projectiles by activating and/or deactivating a control actuation system (CAS) based on measurements of an inertial measurement unit (IMU) and sensors integrated into such IMU, the IMU and sensors being at least part of a configurable guidance sensor suite (CGSS).
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 19, 2021
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Anthony Opperman, Vincent Cozza
  • Patent number: 11125543
    Abstract: A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: September 21, 2021
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Anthony Opperman, Gerard Skebe
  • Patent number: 11118909
    Abstract: The present invention relates to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The present invention further relates to systems and methods for using inertial measurement units IMUs to provide location and guidance. More particularly, the present invention relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results. The present invention further relates to an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: September 14, 2021
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 10979643
    Abstract: The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 13, 2021
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Douglas E. Russell
  • Patent number: 10969226
    Abstract: The present invention relates to systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments). The present invention further relates to systems and methods for using inertial measurement units IMUs to provide location and guidance. More particularly, the present invention relates to the use of a series of low-accuracy or low-resolution IMUs, in combination, to provide high-accuracy or high-resolution location and guidance results.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 6, 2021
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 10735654
    Abstract: The present invention relates to projectiles and munitions, and more specifically to such in flight. More particularly the present invention relates to projectiles and munitions in flight equipped with one or more image sensors adapted for acquiring image data of the environment surrounding the projection or munition in flight. The present invention further relates to systems and methods for correcting or stabilizing motion effects and artifacts present in the image data related to the movement or motion of the projectile or munition in flight, including spin or rotation of the projectile or munition.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 4, 2020
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Douglas E. Russell
  • Patent number: 10527425
    Abstract: Systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments) utilizing inertial measurement units IMUs to provide such location and guidance. A series of low-accuracy or low-resolution IMUs, in combination, are utilized to provide high-accuracy or high-resolution location and guidance results along with an electronics-control system for handing off control of the measurement and guidance of a body in flight between groups or subgroups of IMUs to alternate between high dynamic range/lower resolution and lower dynamic range/higher resolution measurement and guidance as the environment dictates.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 7, 2020
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 10527427
    Abstract: Systems and methods for providing location and guidance, and more particularly for providing location and guidance in environments where global position systems (GPS) are unavailable or unreliable (GPS denied and/or degraded environments), utilizing inertial measurement units (IMUs) to provide such location and guidance. A series of low-accuracy or low-resolution IMUs, in combination, are utilized to provide high-accuracy or high-resolution location and guidance results.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 7, 2020
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Edward J. Rapp
  • Patent number: 10317181
    Abstract: A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 11, 2019
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Anthony Opperman, Gerard Skebe
  • Patent number: 9677864
    Abstract: A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: June 13, 2017
    Assignee: Orbital Research Inc.
    Inventors: Michael Jankowski, Anthony Opperman, Gerard Skebe