Patents by Inventor Michael Janusz Woods

Michael Janusz Woods has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11347054
    Abstract: Methods and systems for triggering presentation of virtual content based on sensor information. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergences. The system may monitor information detected via the sensors, and based on the monitored information, trigger access to virtual content identified in the sensor information. Virtual content can be obtained, and presented as augmented reality content via the display system. The system may monitor information detected via the sensors to identify a QR code, or a presence of a wireless beacon. The QR code or wireless beacon can trigger the display system to obtain virtual content for presentation.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: May 31, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Andrew Rabinovich, Richard Leslie Taylor
  • Publication number: 20220137709
    Abstract: A handheld controller includes a housing and a first vibration source disposed in the housing and characterized by a first phase. The handheld controller also includes a second vibration source disposed in the housing and characterized by a second phase different than the first phase and a controller disposed in the housing, coupled to the first vibration source and the second vibration source, and configured to vary at least one of the first phase or the second phase.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 5, 2022
    Applicant: Magic Leap, Inc.
    Inventor: Michael Janusz Woods
  • Publication number: 20220067965
    Abstract: Systems and methods for reducing error from noisy data received from a high frequency sensor by fusing received input with data received from a low frequency sensor by collecting a first set of dynamic inputs from the high frequency sensor, collecting a correction input point from the low frequency sensor, and adjusting a propagation path of a second set of dynamic inputs from the high frequency sensor based on the correction input point either by full translation to the correction input point or dampened approach towards the correction input point.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Andrew Rabinovich
  • Publication number: 20220050533
    Abstract: An electromagnetic tracking system includes a handheld controller including a first phased array element characterized by a first phase and a second phased array element characterized by a second phase different than the first phase. The first phased array element and the second phased array element are configured to generate a steerable electromagnetic beam characterized by an electromagnetic field pattern. The electromagnetic tracking system also includes a head mounted augmented reality display including an electromagnetic sensor configured to sense the electromagnetic field pattern.
    Type: Application
    Filed: August 27, 2021
    Publication date: February 17, 2022
    Applicant: Magic Leap, Inc.
    Inventor: Michael Janusz Woods
  • Patent number: 11210808
    Abstract: Systems and methods for reducing error from noisy data received from a high frequency sensor by fusing received input with data received from a low frequency sensor by collecting a first set of dynamic inputs from the high frequency sensor, collecting a correction input point from the low frequency sensor, and adjusting a propagation path of a second set of dynamic inputs from the high frequency sensor based on the correction input point either by full translation to the correction input point or dampened approach towards the correction input point.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 28, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Andrew Rabinovich
  • Publication number: 20210239993
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head or pose of a hand-held user input device to enable wearer interaction in a three-dimensional AR environment. A pose sensor (e.g., an inertial measurement unit) in the user input device can provide data on pose (e.g., position or orientation) of the user input device. An electromagnetic (EM) tracking system can also provide pose data. For example, the handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. The AR device can combine the output of the pose sensor and the EM tracking system to reduce drift in the estimated pose of the user input device or to transform the pose into a world coordinate system used by the AR device. The AR device can utilize a Kalman filter to combine the output of the pose sensor and the EM tracking system.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Inventors: Sheng Wan, Michael Janusz Woods
  • Publication number: 20210165217
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head to provide a three-dimensional virtual representation of objects in the wearer's environment. An electromagnetic (EM) tracking system can track head or body pose. A handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. EM information from the sensor can be analyzed to determine location and/or orientation of the sensor and thereby the wearer's pose. The EM emitter and sensor may utilize time division multiplexing (TDM) or dynamic frequency tuning to operate at multiple frequencies. Voltage gain control may be implemented in the transmitter, rather than the sensor, allowing smaller and lighter weight sensor designs. The EM sensor can implement noise cancellation to reduce the level of EM interference generated by nearby audio speakers.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Brian Bucknor, Christopher Lopez, Michael Janusz Woods, Aly H. M. Aly, James William Palmer, Evan Francis Rynk
  • Patent number: 11016305
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head or pose of a hand-held user input device to enable wearer interaction in a three-dimensional AR environment. A pose sensor (e.g., an inertial measurement unit) in the user input device can provide data on pose (e.g., position or orientation) of the user input device. An electromagnetic (EM) tracking system can also provide pose data. For example, the handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. The AR device can combine the output of the pose sensor and the EM tracking system to reduce drift in the estimated pose of the user input device or to transform the pose into a world coordinate system used by the AR device.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: May 25, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Sheng Wan, Michael Janusz Woods
  • Publication number: 20210141448
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head to provide a three-dimensional virtual representation of objects in the wearer's environment. An electromagnetic (EM) tracking system can track head or body pose. A handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. EM information from the sensor can be analyzed to determine location and/or orientation of the sensor and thereby the wearer's pose. An improved or optimized pose can be provided by reverse-estimating a reverse EM measurement matrix and optimizing the pose based on a comparison between the reverse EM measurement matrix and an EM measurement matrix measured by the EM sensor.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 13, 2021
    Inventor: Michael Janusz Woods
  • Publication number: 20210089095
    Abstract: In various embodiments, a wearable component configured to be worn on a head of a user is disclosed. The wearable component can comprise a wearable support and an electronic component coupled to or disposed within the wearable support. A thermal management structure can be provided in thermal communication with the electronic component. The thermal management structure can be configured to transfer heat from the electronic component away from the head of the user when the wearable support is disposed on the head of the user.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 25, 2021
    Inventors: Michael Janusz Woods, Paul M. Greco
  • Patent number: 10948721
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head to provide a three-dimensional virtual representation of objects in the wearer's environment. An electromagnetic (EM) tracking system can track head or body pose. A handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. EM information from the sensor can be analyzed to determine location and/or orientation of the sensor and thereby the wearer's pose. The EM emitter and sensor may utilize time division multiplexing (TDM) or dynamic frequency tuning to operate at multiple frequencies. Voltage gain control may be implemented in the transmitter, rather than the sensor, allowing smaller and lighter weight sensor designs. The EM sensor can implement noise cancellation to reduce the level of EM interference generated by nearby audio speakers.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 16, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Brian Bucknor, Christopher Lopez, Michael Janusz Woods, Aly H. M. Aly, James William Palmer, Evan Francis Rynk
  • Patent number: 10908680
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head to provide a three-dimensional virtual representation of objects in the wearer's environment. An electromagnetic (EM) tracking system can track head or body pose. A handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. EM information from the sensor can be analyzed to determine location and/or orientation of the sensor and thereby the wearer's pose. An improved or optimized pose can be provided by reverse-estimating a reverse EM measurement matrix and optimizing the pose based on a comparison between the reverse EM measurement matrix and an EM measurement matrix measured by the EM sensor.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: February 2, 2021
    Assignee: Magic Leap, Inc.
    Inventor: Michael Janusz Woods
  • Patent number: 10860070
    Abstract: In various embodiments, a wearable component configured to be worn on a head of a user is disclosed. The wearable component can comprise a wearable support and an electronic component coupled to or disposed within the wearable support. A thermal management structure can be provided in thermal communication with the electronic component. The thermal management structure can be configured to transfer heat from the electronic component away from the head of the user when the wearable support is disposed on the head of the user.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Paul M. Greco
  • Publication number: 20200380793
    Abstract: A sensory eyewear system for a mixed reality device can facilitate user's interactions with the other people or with the environment. As one example, the sensory eyewear system can recognize and interpret a sign language, and present the translated information to a user of the mixed reality device. The wearable system can also recognize text in the user's environment, modify the text (e.g., by changing the content or display characteristics of the text), and render the modified text to occlude the original text.
    Type: Application
    Filed: August 6, 2020
    Publication date: December 3, 2020
    Inventors: Eric C. Browy, Michael Janusz Woods, Andrew Rabinovich
  • Publication number: 20200326544
    Abstract: Head-mounted augmented reality (AR) devices can track pose of a wearer's head or pose of a hand-held user input device to enable wearer interaction in a three-dimensional AR environment. A pose sensor (e.g., an inertial measurement unit) in the user input device can provide data on pose (e.g., position or orientation) of the user input device. An electromagnetic (EM) tracking system can also provide pose data. For example, the handheld user input device can include an EM emitter that generates an EM field, and the head-mounted AR device can include an EM sensor that senses the EM field. The AR device can combine the output of the pose sensor and the EM tracking system to reduce drift in the estimated pose of the user input device or to transform the pose into a world coordinate system used by the AR device.
    Type: Application
    Filed: March 6, 2020
    Publication date: October 15, 2020
    Inventors: Sheng Wan, Michael Janusz Woods
  • Patent number: 10769858
    Abstract: A sensory eyewear system for a mixed reality device can facilitate user's interactions with the other people or with the environment. As one example, the sensory eyewear system can recognize and interpret a sign language, and present the translated information to a user of the mixed reality device. The wearable system can also recognize text in the user's environment, modify the text (e.g., by changing the content or display characteristics of the text), and render the modified text to occlude the original text.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: September 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Eric C. Browy, Michael Janusz Woods, Andrew Rabinovich
  • Publication number: 20200226785
    Abstract: Systems and methods for reducing error from noisy data received from a high frequency sensor by fusing received input with data received from a low frequency sensor by collecting a first set of dynamic inputs from the high frequency sensor, collecting a correction input point from the low frequency sensor, and adjusting a propagation path of a second set of dynamic inputs from the high frequency sensor based on the correction input point either by full translation to the correction input point or dampened approach towards the correction input point.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Andrew Rabinovich
  • Publication number: 20200193714
    Abstract: A sensory eyewear system for a mixed reality device can facilitate user's interactions with the other people or with the environment. As one example, the sensory eyewear system can recognize and interpret a sign language, and present the translated information to a user of the mixed reality device. The wearable system can also recognize text in the user's environment, modify the text (e.g., by changing the content or display characteristics of the text), and render the modified text to occlude the original text.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: Eric C. Browy, Michael Janusz Woods, Andrew Rabinovich
  • Patent number: 10650552
    Abstract: Systems and methods for reducing error from noisy data received from a high frequency sensor by fusing received input with data received from a low frequency sensor by collecting a first set of dynamic inputs from the high frequency sensor, collecting a correction input point from the low frequency sensor, and adjusting a propagation path of a second set of dynamic inputs from the high frequency sensor based on the correction input point either by full translation to the correction input point or dampened approach towards the correction input point.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: May 12, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Andrew Rabinovich
  • Patent number: 10580213
    Abstract: A sensory eyewear system for a mixed reality device can facilitate user's interactions with the other people or with the environment. As one example, the sensory eyewear system can recognize and interpret a sign language, and present the translated information to a user of the mixed reality device. The wearable system can also recognize text in the user's environment, modify the text (e.g., by changing the content or display characteristics of the text), and render the modified text to occlude the original text.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 3, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Eric Browy, Michael Janusz Woods, Andrew Rabinovich