Patents by Inventor Michael John Block

Michael John Block has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9962888
    Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: May 8, 2018
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20180030228
    Abstract: Fiber-containing polymethyl methacrylate (PMMA) prepregs are described that include a first and second plurality of fibers. The second plurality of fibers is made from a different material than the first plurality of fibers. The PMMA prepregs also contain a polymerized resin that includes polymethyl methacrylate that has been formed from a reactive resin composition that includes methyl methacrylate. Methods of making fiber-containing PMMA prepregs are also described.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P. Sandoval
  • Patent number: 9815954
    Abstract: Fiber-containing polymethyl methacrylate (PMMA) prepregs are described that include a first and second plurality of fibers. The second plurality of fibers is made from a different material than the first plurality of fibers. The PMMA prepregs also contain a polymerized resin that includes polymethyl methacrylate that has been formed from a reactive resin composition that includes methyl methacrylate. Methods of making fiber-containing PMMA prepregs are also described.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: November 14, 2017
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20170120544
    Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20170066158
    Abstract: According to one embodiment, a system for manufacturing a polymethyl methacrylate (PMMA) prepreg includes a mechanism for continuously moving a fabric or mat and a resin application component that applies a methyl methacrylate (MMA) resin to the fabric or mat. The system also includes a press mechanism that presses the fabric or mat during the continuous movement subsequent to the application of the MMA resin to ensure that the MMA resin fully saturates the fabric or mat. The system further includes a curing oven through which the fabric or mat is continuously moved. The curing oven is maintained at a temperature of between 40° C. and 100° C. to polymerize the MMA resin and thereby form PMMA so that upon exiting the curing oven, the fabric or mat is fully impregnated with PMMA.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20170066888
    Abstract: Fiber-containing polymethyl methacrylate (PMMA) prepregs are described that include a first and second plurality of fibers. The second plurality of fibers is made from a different material than the first plurality of fibers. The PMMA prepregs also contain a polymerized resin that includes polymethyl methacrylate that has been formed from a reactive resin composition that includes methyl methacrylate. Methods of making fiber-containing PMMA prepregs are also described.
    Type: Application
    Filed: October 12, 2015
    Publication date: March 9, 2017
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P. Sandoval
  • Publication number: 20170008239
    Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 12, 2017
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20160280868
    Abstract: This invention relates to a process of making a fiber-reinforced composite. Glass fibers may be provided. These glass fibers may be treated with a sizing composition that has a coupling-activator compound with the formula: S—X-(A)n, where S represents a silicon-containing coupling moiety capable of bonding to the surface of glass fibers, X represents a linking moiety, and (A)n represents one or more polymerization activator moieties. The treated glass fibers may be combined with a resin to make a fiber-resin mixture. The resin may have a monomer, a catalyst, and an activator compound capable of initiating a polymerization of the monomer. The monomer may be a lactam or lactone having 3-12 carbon atoms in the main ring. The fiber-resin mixture may then be cured so that the monomer polymerizes to form a thermoplastic polymer matrix of the fiber-reinforced composite. The thermoplastic polymer matrix may be formed by in situ polymerization initiated from both the surface of the glass fibers and the resin.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar
  • Patent number: 9387626
    Abstract: This invention relates to a process of making a fiber-reinforced composite. Glass fibers may be provided. These glass fibers may be treated with a sizing composition that has a coupling-activator compound with the formula: S—X-(A)n, where S represents a silicon-containing coupling moiety capable of bonding to the surface of glass fibers, X represents a linking moiety, and (A)n represents one or more polymerization activator moieties. The treated glass fibers may be combined with a resin to make a fiber-resin mixture. The resin may have a monomer, a catalyst, and an activator compound capable of initiating a polymerization of the monomer. The monomer may be a lactam or lactone having 3-12 carbon atoms in the main ring. The fiber-resin mixture may then be cured so that the monomer polymerizes to form a thermoplastic polymer matrix of the fiber-reinforced composite. The thermoplastic polymer matrix may be formed by in situ polymerization initiated from both the surface of the glass fibers and the resin.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: July 12, 2016
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar
  • Publication number: 20160102182
    Abstract: Methods of making a prepreg are described. The methods include the steps of forming a fiber-containing substrate, and contacting the fiber-containing substrate with a resin mixture. The resin mixture may include particles of monomers or oligomers mixed in a liquid medium, and the particles may be coated on the fiber-containing substrate to form a coated substrate. The liquid medium may be removed from the coated substrate to form the prepreg. The prepregs may be used to make fiber-reinforced articles.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 14, 2016
    Inventors: Mingfu Zhang, Jawed Asrar, Klaus Friedrich Gleich, Michael John Block, Asheber Yohannes
  • Publication number: 20140256201
    Abstract: This invention relates to a process of making a fiber-reinforced composite. Glass fibers may be provided. These glass fibers may be treated with a sizing composition that has a coupling-activator compound with the formula: S—X-(A)n, where S represents a silicon-containing coupling moiety capable of bonding to the surface of glass fibers, X represents a linking moiety, and (A)n represents one or more polymerization activator moieties. The treated glass fibers may be combined with a resin to make a fiber-resin mixture. The resin may have a monomer, a catalyst, and an activator compound capable of initiating a polymerization of the monomer. The monomer may be a lactam or lactone having 3-12 carbon atoms in the main ring. The fiber-resin mixture may then be cured so that the monomer polymerizes to form a thermoplastic polymer matrix of the fiber-reinforced composite. The thermoplastic polymer matrix may be formed by in situ polymerization initiated from both the surface of the glass fibers and the resin.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar
  • Patent number: 7967905
    Abstract: Provided is a method of mixing a modified bitumen composition and feeding one or more polymeric materials to an extruder, together with asphalt fed at more than one location along a length of the extruder. Improved mixing and elimination of asphalt melting in the production of rolled goods and other products is improved.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 28, 2011
    Assignee: Johns Manville
    Inventors: Raymond C. Swann, Klaus Friedrich Gleich, Walter Alexander Johnson, Michael John Block, John VanNice
  • Publication number: 20090145331
    Abstract: Provided is a method of mixing a modified bitumen composition and feeding one or more polymeric materials to an extruder, together with asphalt fed at more than one location along a length of the extruder. Improved mixing and elimination of asphalt melting in the production of rolled goods and other products is improved.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Inventors: Raymond C. Swann, Klaus Friedrich Gleich, Walter Alexander Johnson, Michael John Block, John VanNice