Patents by Inventor Michael John Bradley

Michael John Bradley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180036118
    Abstract: A medical device for implantation into vessels or luminal structures within the body is provided. The medical device, such as a stent and a synthetic graft, is coated with a pharmaceutical composition consisting of a controlled-release matrix and one or more pharmaceutical substances for direct delivery of drugs to surrounding tissues. The coating on the medical device further comprises a ligand such as an antibody or a small molecule for capturing progenitor endothelial cells in the blood contacting surface of the device for restoring an endothelium at the site of injury. In particular, the drug-coated stents are for use, for example, in balloon angioplasty procedures for preventing or inhibiting restenosis.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 8, 2018
    Inventors: Robert J. Cottone, Steven Rowland, Michael John Bradley Kutryk, Horace R. Davis
  • Patent number: 9555166
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 31, 2017
    Assignee: OrbusNeich Medical Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Patent number: 9364565
    Abstract: Therapeutic and drug delivery systems are provided in the form of medical devices with coatings for capturing and immobilizing target cells such as circulating progenitor or genetically-altered mammalian cells in vivo. The genetically-altered cells are transfected with genetic material for expressing a marker gene and at least one therapeutic gene in a constitutively or controlled manner. The marker gene is a cell membrane antigen not found in circulating cells in the blood stream and therapeutic gene encodes a peptide for the treatment of disease, such as, vascular disease and cancer. The coating on the medical device may be a biocompatible matrix comprising at least one type of ligand, such as antibodies, antibody fragments, other peptides and small molecules, which recognize and bind the target cells.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: June 14, 2016
    Assignee: OrbusNeich Medical, Inc.
    Inventors: Michael John Bradley Kutryk, Robert J. Cottone, Jr., Stephen M. Rowland
  • Publication number: 20150352263
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 10, 2015
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Publication number: 20150352261
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Patent number: 9072723
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: July 7, 2015
    Assignee: ORBUS MEDICAL TECHNOLOGY INC
    Inventors: Michael John Bradley Kutryk, Robert J. Cottone, Jr., Stephen M. Rowland
  • Publication number: 20130035755
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 7, 2013
    Applicant: OrbusNeich Medical, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Patent number: 7803183
    Abstract: A medical device with a coating for capturing target cells in vivo is provided. In particular, the medical device is coated with at least one layer of matrix and a layer of antibodies, antibody fragments or combinations thereof, which bind with specificity to mature or progenitor endothelial cells at various developmental stages to form an endothelial cell layer on the surface of the device. The coated medical device can be, for example, a stent or a synthetic graft and is useful in therapy of diseases such as restenosis, atherosclerosis, and thromboembolic complications.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 28, 2010
    Assignee: OrbusNeich Medical, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Patent number: 7037332
    Abstract: A medical device coated with one or more antibodies and one or more layers of a matrix is disclosed. The antibodies or fragments thereof react with an endothelial cell surface antigen. Also disclosed are compositions and methods for producing the medical device. The matrix coating the medical device may be composed of a synthetic material, such as a fullerene, or a naturally occurring material. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote the adherence of cells captured in vivo on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: May 2, 2006
    Assignee: Orbus Medical Technologies, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Publication number: 20050043787
    Abstract: This invention provides compositions and methods for producing a medical device coated with a matrix and an antibody which reacts with an endothelial cell antigen. The matrix coating the medical device may be composed of synthetic material, such as polyurethane, poly-L-lactic acid, cellulose ester or polyethylene glycol. In another embodiment, the matrix is composed of naturally occurring materials, such as collagen, fibrin, elastin, amorphous carbon. In a third embodiment, the matrix may be composed of fullerenes. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote adherence of endothelial cells on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the endothelial cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Application
    Filed: April 26, 2004
    Publication date: February 24, 2005
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Stephen Maxwell Rowland
  • Patent number: 6787708
    Abstract: A computer-aided design (CAD) tool is used to create a preliminary design of a mulit-layered printed circuit board, comprising a layout of electrical components on a main region of a printed circuit board and a routing of signal traces among the lectical components within the main region. An extended region is then added to the design on the CAD tool that comprises a layout of selected debug connectors on the extended region and at least one additional signal layer. Traces connecting the debug connectors to selected vias of the main region of the printed circuit board are then routed on the added signal layer only. A prototype board is then created and tested. Once testing is complete, the extended region and the at least one additional layer are removed from the design in the CAD tool without disturbing the layout of components and routing of signal traces on the main region of the printed circuit board.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: September 7, 2004
    Assignee: Unisys Corporation
    Inventors: Daniel A. Jochym, James C. Witte, Michael John Bradley
  • Publication number: 20020049495
    Abstract: This invention provides compositions and methods for producing a medical device coated with a matrix and an antibody which reacts with an endothelial cell antigen. The matrix coating the medical device may be composed of synthetic material, such as polyurethane, poly-L-lactic acid, cellulose ester or polyethylene glycol. In another embodiment, the matrix is composed of naturally occurring materials, such as collagen, fibrin, elastin, amorphous carbon. In a third embodiment, the matrix may be composed of fullerenes. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote adherence of endothelial cells on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the endothelial cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Application
    Filed: March 15, 2001
    Publication date: April 25, 2002
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Stephen Maxwell Rowland