Patents by Inventor Michael Joseph Timlin, III

Michael Joseph Timlin, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12084990
    Abstract: One embodiment of an improved thermal power cycle comprising a wet motive fluid, pump (21), evaporator (22), expander (23), and condenser (24). Using a wet motive fluid, it can: (i) operate efficiently over a lower range of heat source temperatures than the steam Rankine cycle, (ii) eliminate the need for superheating the fluid in evaporator (22), (iii) allow for complete expansion of the fluid in expander (23), and/or (iv) reduce back-pressure by the fluid on expander (23), thereby providing higher efficiency than the ORC (organic Rankine cycle), Eliminating the regenerator that is used by ORC systems results in a simpler, less costly system. Using direct-contact heat exchange in condenser (24) rather than the indirect-contact heat exchange used by ORC systems results in more efficient condensation of the fluid. Using a pump (21) rather than the power-hungry compressor used by ORC systems further reduces power losses and expenses.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: September 10, 2024
    Inventor: Michael Joseph Timlin, III
  • Patent number: 11028735
    Abstract: One embodiment of an improved thermal power cycle comprising a wet binary motive fluid, pump (21), evaporator (22), expander (23), and condenser (24). Using a binary motive fluid, it can operate efficiently over a lower range of heat source temperatures than the steam Rankine cycle. Using a wet binary motive fluid, it eliminates the need for superheating the fluid in evaporator (22), allows for complete expansion of the fluid in expander (23), and reduces back-pressure by the fluid on expander (23), thereby providing higher efficiency than the ORC (organic Rankine cycle), Eliminating the regenerator that is used by ORC systems results in a simpler, less costly system. Using direct-contact heat exchange in condenser (24) rather than the indirect-contact heat exchange used by ORC systems results in more efficient condensation of the fluid. Using a pump (21) rather than the power-hungry compressor used by ORC systems further reduces power losses and expenses.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: June 8, 2021
    Inventor: Michael Joseph Timlin, III
  • Publication number: 20210115817
    Abstract: One embodiment of an improved thermal power cycle comprising a wet motive fluid, pump (21), evaporator (22), expander (23), and condenser (24). Using a wet motive fluid, it can: (i) operate efficiently over a lower range of heat source temperatures than the steam Rankine cycle, (ii) eliminate the need for superheating the fluid in evaporator (22), (iii) allow for complete expansion of the fluid in expander (23), and/or (iv) reduce back-pressure by the fluid on expander (23), thereby providing higher efficiency than the ORC (organic Rankine cycle), Eliminating the regenerator that is used by ORC systems results in a simpler, less costly system. Using direct-contact heat exchange in condenser (24) rather than the indirect-contact heat exchange used by ORC systems results in more efficient condensation of the fluid. Using a pump (21) rather than the power-hungry compressor used by ORC systems further reduces power losses and expenses.
    Type: Application
    Filed: December 4, 2020
    Publication date: April 22, 2021
    Inventor: Michael Joseph Timlin, III
  • Publication number: 20130133328
    Abstract: One embodiment of an improved thermal power cycle comprising a wet binary motive fluid, pump (21), evaporator (22), expander (23), and condenser (24). Using a binary motive fluid, it can operate efficiently over a lower range of heat source temperatures than the steam Rankine cycle. Using a wet binary motive fluid, it eliminates the need for superheating the fluid in evaporator (22), allows for complete expansion of the fluid in expander (23), and reduces back-pressure by the fluid on expander (23), thereby providing higher efficiency than the ORC (organic Rankine cycle), Eliminating the regenerator that is used by ORC systems results in a simpler, less costly system. Using direct-contact heat exchange in condenser (24) rather than the indirect-contact heat exchange used by ORC systems results in more efficient condensation of the fluid. Using a pump (21) rather than the power-hungry compressor used by ORC systems further reduces power losses and expenses.
    Type: Application
    Filed: August 26, 2011
    Publication date: May 30, 2013
    Inventor: Michael Joseph Timlin, III