Patents by Inventor Michael Judy

Michael Judy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11892467
    Abstract: A microelectromechanical systems (MEMS) accelerometer is provided, comprising a substrate disposed in a plane defined by a first axis and a second axis perpendicular to the first axis; a first proof mass and a second proof mass coupled to the substrate and configured to translate in opposite directions of each other along a third axis perpendicular to the first and second axes; and at least one lever coupling the first proof mass to the second proof mass, wherein, the MEMS accelerometer is configured to detect acceleration along the third axis via detection of translation of the first and second proof masses along the third axis; and the MEMS accelerometer exhibits symmetry about the first and second axes.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 6, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Michael Judy
  • Patent number: 11805396
    Abstract: Described herein are techniques for improving the signal-to-noise ratio of a wireless sensor platform. The device that interrogates a wireless sensor node (an interrogator) may be configured to determine the quantity to be measured by extracting information from multiple echoes produced in response to multiple interrogation pulses or produced due to multi-path propagation. Although different echoes may have been transformed to different extents, the echoes may share unique characteristics that are specific to the wireless sensor node that produced them. Accordingly, the SNR may be improved by keeping only portions of the received signal that exhibit such characteristics. The SNR may be further improved by summing the echoes together. In some embodiments, the echoes may be summed together in a coherent fashion, thereby producing an echo having an amplitude greater than the amplitude of each of the received echoes.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: October 31, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Eugene Oh Hwang, Tao Yu, Phillip Nadeau, Michael Judy, Rui Zhang
  • Publication number: 20230234835
    Abstract: Packaging of microfabricated devices, such as integrated circuits, microelectromechanical systems (MEMS), or sensor devices is described. The packaging is 3D heterogeneous packaging in at least some embodiments. The 3D heterogeneous packaging includes an interposer. The interposer includes stress relief platforms. Thus, stresses originating in the packaging do not propagate to the packaged device. A stress isolation platform is an example of a stress relief feature. A stress isolation platform includes a portion of an interposer coupled to the remainder of the interposer via stress isolation suspensions. Stress isolation suspensions can be formed by etching trenches through the interposer.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Jianglong Zhang, Li Chen, John C. Cowles, Michael Judy, Shafi Saiyed
  • Patent number: 11656077
    Abstract: An extensional mode electrostatic microelectromechanical systems (MEMS) gyroscope is described. The MEMS gyroscope operates in an extensional mode. The MEMS gyroscope comprises a vibrating ring structure that is electrostatically excited in the extensional mode.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 23, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Michael Judy
  • Patent number: 11415595
    Abstract: Single-axis teeter-totter accelerometers having a plurality of anchors are disclosed. The plurality of anchors may be arranged about a rotation axis of the teeter-totter proof mass. Each of the plurality of anchors may be coupled to the proof mass by two torsional springs each extending along the rotation axis. The plurality of anchors allows an increased number of torsional springs to be coupled to the proof mass and thus greater torsional stiffness for the proof mass may be achieved. Due to the higher torsional stiffness, the disclosed single-axis teeter-totter accelerometers may be deployed in high-frequency environments where such increased torsional stiffness is required, for example, around 20 kHz and above.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 16, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Gaurav Vohra, Xin Zhang, Michael Judy
  • Publication number: 20220196699
    Abstract: A microelectromechanical systems (MEMS) accelerometer is provided, comprising a substrate disposed in a plane defined by a first axis and a second axis perpendicular to the first axis; a first proof mass and a second proof mass coupled to the substrate and configured to translate in opposite directions of each other along a third axis perpendicular to the first and second axes; and at least one lever coupling the first proof mass to the second proof mass, wherein, the MEMS accelerometer is configured to detect acceleration along the third axis via detection of translation of the first and second proof masses along the third axis; and the MEMS accelerometer exhibits symmetry about the first and second axes.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 23, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Michael Judy
  • Patent number: 11255873
    Abstract: Z-axis teeter-totter accelerometers with embedded movable structures are disclosed. The teeter-totter accelerometer may include an embedded mass which pivots or translates out-of-plane from the teeter-totter beam. The pivoting or translating embedded mass may be positioned to increase the sensitivity of the z-axis accelerometer by providing greater z-axis displacement than the teeter-totter beam itself exhibits.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 22, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Gaurav Vohra, Michael Judy
  • Publication number: 20210380403
    Abstract: A stress-isolated microelectromechanical systems (MEMS) device and a method of manufacture of the stress-isolated MEMS device are provided. MEMS devices may be sensitive to stress and may provide lower performance when subjected to stress. A stress-isolated MEMS device may be manufactured by etching a trench and/or a cavity in a first side of a substrate and subsequently forming a MEMS device on a surface of a platform opposite the first side of the substrate. Such a stress-isolated MEMS device may exhibit better performance than a MEMS device that is not stress-isolated. Moreover, manufacturing the MEMS device by first forming a trench and cavity on a backside of a wafer, before forming the MEMS device on a suspended platform, provides increased yield and allows for fabrication of smaller parts, in at least some embodiments.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 9, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Christopher Needham, Andrew Proudman, Nikolay Pokrovskiy, George M. Molnar, II, Laura Cornelia Popa, Michael Judy
  • Publication number: 20200408801
    Abstract: Single-axis teeter-totter accelerometers having a plurality of anchors are disclosed. The plurality of anchors may be arranged about a rotation axis of the teeter-totter proof mass. Each of the plurality of anchors may be coupled to the proof mass by two torsional springs each extending along the rotation axis. The plurality of anchors allows an increased number of torsional springs to be coupled to the proof mass and thus greater torsional stiffness for the proof mass may be achieved. Due to the higher torsional stiffness, the disclosed single-axis teeter-totter accelerometers may be deployed in high-frequency environments where such increased torsional stiffness is required, for example, around 20 kHz and above.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Gaurav Vohra, Xin Zhang, Michael Judy
  • Publication number: 20200314607
    Abstract: Described herein are techniques for improving the signal-to-noise ratio of a wireless sensor platform. The device that interrogates a wireless sensor node (an interrogator) may be configured to determine the quantity to be measured by extracting information from multiple echoes produced in response to multiple interrogation pulses or produced due to multi-path propagation. Although different echoes may have been transformed to different extents, the echoes may share unique characteristics that are specific to the wireless sensor node that produced them. Accordingly, the SNR may be improved by keeping only portions of the received signal that exhibit such characteristics. The SNR may be further improved by summing the echoes together. In some embodiments, the echoes may be summed together in a coherent fashion, thereby producing an echo having an amplitude greater than the amplitude of each of the received echoes.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Eugene Oh Hwang, Tao Yu, Phillip Nadeau, Michael Judy, Rui Zhang
  • Patent number: 10759659
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 1, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Publication number: 20200249020
    Abstract: An extensional mode electrostatic microelectromechanical systems (MEMS) gyroscope is described. The MEMS gyroscope operates in an extensional mode. The MEMS gyroscope comprises a vibrating ring structure that is electrostatically excited in the extensional mode.
    Type: Application
    Filed: December 16, 2019
    Publication date: August 6, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Michael Judy
  • Publication number: 20200081029
    Abstract: Z-axis teeter-totter accelerometers with embedded movable structures are disclosed. The teeter-totter accelerometer may include an embedded mass which pivots or translates out-of-plane from the teeter-totter beam. The pivoting or translating embedded mass may be positioned to increase the sensitivity of the z-axis accelerometer by providing greater z-axis displacement than the teeter-totter beam itself exhibits.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Gaurav Vohra, Michael Judy
  • Publication number: 20190047846
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Patent number: 10203352
    Abstract: A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: February 12, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, William A. Clark, Michael Judy
  • Patent number: 10073113
    Abstract: In one aspect, the disclosure is directed to a MEMS device. The MEMS device includes a silicon-based movable MEMS sensor element. The MEMS device also includes a plurality of wells formed into at least one surface of the movable MEMS sensor element. Each well is filled with at least one metal so as to increase the effective mass of the movable MEMS sensor element. The metal may be tungsten or tantalum, or an alloy with tungsten or tantalum.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: September 11, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy
  • Publication number: 20180038887
    Abstract: A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
    Type: Application
    Filed: August 4, 2016
    Publication date: February 8, 2018
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, William A. Clark, Michael Judy
  • Patent number: 8464571
    Abstract: A calibration system for a MEMS system having at least one overdamped motion axis includes a measurement module for determining a location of a pole of a MEMS device in the overdamped motion axis, a closed-loop feedback system configured to change a first location of the pole to a second location of the pole, and a computation module for calculating a resonant frequency and/or a quality factor using the first and the second location of the pole as determined by the measurement module. The calibration system further includes a calibration module for calibrating the MEMS system based on the calculated resonant frequency and/or the calculated quality factor.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 18, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Andrew Sparks, Michael Judy
  • Patent number: 8344487
    Abstract: A packaged microchip has a lead frame with a die directly contacting at least a single, contiguous portion of the lead frame. The portion of the lead frame has a top surface forming a concavity and contacting the die. The packaged microchip also has mold material substantially encapsulating part of the top surface of the portion of the lead frame.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 1, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy, Kevin H. L. Chau, Nelson Kuan, Timothy Spooner, Chetan Paydenkar, Peter Farrell
  • Patent number: 8208671
    Abstract: A MEMS microphone has a backplate, a diaphragm movable relative to the backplate, and a backside cavity adjacent to the backplate or the diaphragm. The backside cavity has sidewalls with at least one rib protruding inward toward a center of the backside cavity.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 26, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Thomas Chen, Michael Judy