Patents by Inventor Michael K. Cinibulk

Michael K. Cinibulk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780780
    Abstract: A method of manufacturing a coated reinforcing fiber for use in Ceramic Matrix Composites, the method comprising pre-oxidizing a plurality of silicon-based fibers selected from the group consisting of silicon carbide (SiC) fibers, silicon nitride (Si3N4) fibers, SiCO fibers, SiCN fibers, SiCNO fibers, and SiBCN fibers at between 700 to 1300 degrees Celsius in an oxidizing atmosphere to form a silica surface layer on the plurality of silicon-based fibers, forming a plurality of pre-oxidized fibers; applying a rare earth orthophosphate (REPO4) coating to the plurality of pre-oxidized fibers; and heating the plurality of REPO4 coated pre-oxidized fibers at about 1000-1500 degrees Celsius in an inert atmosphere to react the REPO4 with the silica surface layer to form a rare earth silicate or disilicate. The pre-oxidizing step may be 0.5 hours to about 100 hours. The heating step may be about 5 minutes to about 100 hours.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Emmanuel E Boakye, Michael K Cinibulk, Randal S Hay, Pavel Mogilevsky, Triplicane A Parthasarathy, Kristin A Keller
  • Publication number: 20210340067
    Abstract: A method of manufacturing a coated reinforcing fiber for use in Ceramic Matrix Composites, the method comprising pre-oxidizing a plurality of silicon-based fibers selected from the group consisting of silicon carbide (SiC) fibers, silicon nitride (Si3N4) fibers, SiCO fibers, SiCN fibers, SiCNO fibers, and SiBCN fibers at between 700 to 1300 degrees Celsius in an oxidizing atmosphere to form a silica surface layer on the plurality of silicon-based fibers, forming a plurality of pre-oxidized fibers; applying a rare earth orthophosphate (REPO4) coating to the plurality of pre-oxidized fibers; and heating the plurality of REPO4 coated pre-oxidized fibers at about 1000-1500 degrees Celsius in an inert atmosphere to react the REPO4 with the silica surface layer to form a rare earth silicate or disilicate. The pre-oxidizing step may be 0.5 hours to about 100 hours. The heating step may be about 5 minutes to about 100 hours.
    Type: Application
    Filed: March 29, 2021
    Publication date: November 4, 2021
    Inventors: Emmanuel E. Boakye, Michael K. Cinibulk, Randal S. Hay, Pavel Mogilevsky, Triplicane A. Parthasarathy, Kristin A. Keller
  • Patent number: 8562901
    Abstract: The current invention provides a method to fabricate a crack-free continuous fiber-reinforced ceramic matrix composite by eliminating shrinkage stresses through a unique combination of freeze forming and a non-shrinking matrix composition. Cracks related to drying shrinkage are eliminated through freeze forming and cracks related to sintering shrinkage are eliminated by using a matrix that does not shrink at the given sintering temperature. After sintering, a crack-free ceramic composite is obtained.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Tai-Il Mah, Kristin A. Keller, Michael K. Cinibulk
  • Patent number: 6620756
    Abstract: A reinforcing material is uniformly dispersed in a yttrium aluminum garnet matrix material for use as a machine tool material specially suited for machining Ti or a Ti alloy. The matrix material and the reinforcing material are present in proportions selected such that the machine tool material is substantially resistant to transfer of impurities to a Ti or Ti alloy by way of either chemical reaction with or diffusion into the Ti or Ti alloy material to be machined. The matrix material preferably comprises Y3Al5O12. The reinforcing material may comprise SiCw, TiC, TiN, TiB2, or combinations thereof and is preferably present in an amount sufficient to enable electrical discharge machining of the machine tool material. In addition, the machine tool material defines a thermodynamically stable phase at relatively high machining temperatures.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: September 16, 2003
    Assignee: UES, Inc.
    Inventors: Tai-Il Mah, Triplicane A. Parthasarathy, Michael K. Cinibulk
  • Publication number: 20020198095
    Abstract: A reinforcing material is uniformly dispersed in a yttrium aluminum garnet matrix material for use as a machine tool material specially suited for machining Ti or a Ti alloy. The matrix material and the reinforcing material are present in proportions selected such that the machine tool material is substantially resistant to transfer of impurities to a Ti or Ti alloy by way of either chemical reaction with or diffusion into the Ti or Ti alloy material to be machined. The matrix material preferably comprises Y3Al5O12. The reinforcing material may comprise SiCw, TiC, TiN, TiB2, or combinations thereof and is preferably present in an amount sufficient to enable electrical discharge machining of the machine tool material. In addition, the machine tool material defines a thermodynamically stable phase at relatively high machining temperatures.
    Type: Application
    Filed: June 20, 2001
    Publication date: December 26, 2002
    Inventors: Tai-ll Mah, Triplicane A. Parthasarathy, Michael K. Cinibulk
  • Patent number: 5894035
    Abstract: A method of making a mechanically stable, fiber having an inclusion of ion-conducting material which includes the steps of coating a single-crystal or polycrystalline .alpha.-alumina fiber with a zirconia or a hexaluminate precursor, optionally heating the coated fiber to dry the coating, when the coating is applied as a suspension or sol, heating the coated fiber to a temperature of about 1000.degree. to 1800.degree. C. to promote the growth of alpha-alumina toothlike extensions in the coating and epitaxial formation of the zirconia or hexaluminate on the sides of the extensions, embedding the fiber in an .alpha.-alumina matrix material, and heating the resulting fiber-matrix composite to react and texture the coating and densify the assembly.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: April 13, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael K. Cinibulk, Randall S. Hay