Patents by Inventor Michael K. FORSYTH

Michael K. FORSYTH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10027278
    Abstract: Short-circuit current, maximum power, and open circuit voltage during a single flash are determined by varying intensity, voltage, and current. An apparatus determines the substrate doping and the series resistance of the solar cell. The series resistance of the cell is determined from a voltage step from the maximum power voltage operating point to the open-circuit condition. Methods are described for determining the substrate doping from stepping or sweeping the voltage. The first uses a voltage step and finds the change in charge that results. This determines a unique doping if the series resistance is known. The second uses data for a case of varying current, voltage, and light intensity, and compares this data to the case of varying voltage and intensity with no current. By transposing both cases into the steady state, agreement between the two data sets is found for unique doping and series resistance values.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: July 17, 2018
    Assignee: SINTON CONSULTING, INC
    Inventors: Ronald A. Sinton, Michael K. Forsyth, Adrienne L. Blum, James S. Swirhun
  • Patent number: 9509250
    Abstract: A solar cell or module is illuminated at one sun intensity and is placed into short circuit. Current and voltage measurements are taken. Control circuitry commands a second, higher terminal voltage of the solar cell such as a maximum power voltage. A higher intensity light pulse (for example, three suns) is applied to the solar cell or module when the second voltage is commanded. Voltage ramps more quickly because of the high-intensity light pulse. When the second terminal voltage is reached the light pulse terminates and measurements are taken while the solar cell remains illuminated at one sun intensity. The solar cell is placed into open circuit conditions and in conjunction with that action another high-intensity light pulse is applied. When the steady-state open circuit voltage for one sun is reached the pulse terminates. Characteristics are measured including current and voltage at the terminals of the solar cell or module.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: November 29, 2016
    Assignee: Sinton Consulting, Inc.
    Inventors: Ronald A. Sinton, Michael K. Forsyth
  • Publication number: 20150303868
    Abstract: A solar cell or module is illuminated at one sun intensity and is placed into short circuit. Current and voltage measurements are taken. Control circuitry commands a second, higher terminal voltage of the solar cell such as a maximum power voltage. A higher intensity light pulse (for example, three suns) is applied to the solar cell or module when the second voltage is commanded. Voltage ramps more quickly because of the high-intensity light pulse. When the second terminal voltage is reached the light pulse terminates and measurements are taken while the solar cell remains illuminated at one sun intensity. The solar cell is placed into open circuit conditions and in conjunction with that action another high-intensity light pulse is applied. When the steady-state open circuit voltage for one sun is reached the pulse terminates. Characteristics are measured including current and voltage at the terminals of the solar cell or module.
    Type: Application
    Filed: November 24, 2014
    Publication date: October 22, 2015
    Inventors: Ronald A. SINTON, Michael K. FORSYTH
  • Publication number: 20140333319
    Abstract: Short-circuit current, maximum power, and open circuit voltage during a single flash are determined by varying intensity, voltage, and current. An apparatus determines the substrate doping and the series resistance of the solar cell. The series resistance of the cell is determined from a voltage step from the maximum power voltage operating point to the open-circuit condition. Methods are described for determining the substrate doping from stepping or sweeping the voltage. The first uses a voltage step and finds the change in charge that results. This determines a unique doping if the series resistance is known. The second uses data for a case of varying current, voltage, and light intensity, and compares this data to the case of varying voltage and intensity with no current. By transposing both cases into the steady state, agreement between the two data sets is found for unique doping and series resistance values.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Ronald A. SINTON, Michael K. FORSYTH, Adrienne L. BLUM, James S. SWIRHUN