Patents by Inventor Michael Klug

Michael Klug has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116486
    Abstract: The aim of the invention is to allow a reliable quantification and classification of brake abrasion of a brake system of a vehicle and simultaneously reduce the complexity in a practical application. This is achieved by a measuring rim with a rim interior, in which a collecting housing is arranged that extends in the circumferential direction of the measuring rim over an extension angle (?). A collecting housing interior is formed in the collecting housing, and the collecting housing is at least partly open towards the collecting housing interior on a radially inner circumferential surface extending in the circumferential direction of the measuring rim. A discharge area is provided on the rim flange on the measuring rim, and a collecting channel which connects the collecting housing interior of the collecting housing to the discharge area is provided on the measuring rim.
    Type: Application
    Filed: January 28, 2022
    Publication date: April 11, 2024
    Inventors: Michael Peter Huber, Peter Fischer, Martin Kupper, Andreas Klug
  • Patent number: 11945609
    Abstract: An apparatus for controlling docking with a spacecraft includes at least one camera for generating at least one image pixel stream of the spacecraft. A field programmable gate array (FPGA) receives the at least one image pixel stream from the at least one camera. The FPGA texture processes the at least one pixel stream to generate at least one texture map for the at least one image pixel stream. A processor receives the at least one texture map from the FPGA and calculates texture map statistics responsive to the generated at least one texture map, generates thresholding results for the at least one pixel image stream responsive to the generated at least one texture map, determines a bus centroid of the spacecraft responsive to the generated thresholding results and outputs the determined bus centroid of the spacecraft. A docking controller controls docking of with the spacecraft responsive to the determined bus centroid of the spacecraft.
    Type: Grant
    Filed: August 16, 2023
    Date of Patent: April 2, 2024
    Assignee: FALCON EXODYNAMICS, INC.
    Inventors: Michael Klug, Joseph Vermeersch, Matthew Banfield, Adriel Bustamante, Jonathan Wolff
  • Publication number: 20240068753
    Abstract: A temperature control device for a gaseous media. The temperature control device includes a first heat exchanger layer in which a medium channel for a gas to be temperature-controlled is formed, a second heat exchanger layer which extracts heat from and/or supplies heat to the first heat exchanger layer, and a diffusion layer which is arranged between the first heat exchanger layer and the second heat exchanger layer. The diffusion layer is open to the gas to be temperature-controlled.
    Type: Application
    Filed: January 4, 2022
    Publication date: February 29, 2024
    Applicant: AVL LIST GMBH
    Inventors: MICHAEL BUCHNER, SANDRO MASOTTI, STEFAN KARANOVIC, THOMAS ROTHLAENDER, KATARZYNA KUDLATY, ANDREAS KLUG
  • Patent number: 11630257
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 18, 2023
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug
  • Publication number: 20230055420
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 23, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. TEKOLSTE, Michael A. KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT
  • Patent number: 11487121
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: November 1, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael A. Klug, Paul M. Greco, Brian T. Schowengerdt
  • Patent number: 11402629
    Abstract: An imaging system includes a light source configured to produce a plurality of spatially separated light beams. The system also includes an injection optical system configured to modify the plurality of beams, such that respective pupils formed by beams of the plurality exiting from the injection optical system are spatially separated from each other. The system further includes a light-guiding optical element having an in-coupling grating configured to admit a first beam of the plurality into the light-guiding optical element while excluding a second beam of the plurality from the light-guiding optical element, such that the first beam propagates by substantially total internal reflection through the light-guiding optical element.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: August 2, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Michael A. Klug, Scott C. Cahall, Hyunsun Chung
  • Publication number: 20220137404
    Abstract: Several unique configurations for interferometric recording of volumetric phase diffractive elements with relatively high angle diffraction for use in waveguides are disclosed. Separate layer EPE and OPE structures produced by various methods may be integrated in side-by-side or overlaid constructs, and multiple such EPE and OPE structures may be combined or multiplexed to exhibit EPE/OPE functionality in a single, spatially-coincident layer. Multiplexed structures reduce the total number of layers of materials within a stack of eyepiece optics, each of which may be responsible for displaying a given focal depth range of a volumetric image.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael Klug
  • Patent number: 11243395
    Abstract: Several unique configurations for interferometric recording of volumetric phase diffractive elements with relatively high angle diffraction for use in waveguides are disclosed. Separate layer EPE and OPE structures produced by various methods may be integrated in side-by-side or overlaid constructs, and multiple such EPE and OPE structures may be combined or multiplexed to exhibit EPE/OPE functionality in a single, spatially-coincident layer. Multiplexed structures reduce the total number of layers of materials within a stack of eyepiece optics, each of which may be responsible for displaying a given focal depth range of a volumetric image.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: February 8, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael Klug
  • Publication number: 20220035091
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Application
    Filed: October 19, 2021
    Publication date: February 3, 2022
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug
  • Patent number: 11181681
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 23, 2021
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug
  • Publication number: 20210208406
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Application
    Filed: March 23, 2021
    Publication date: July 8, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. TEKOLSTE, Michael A. KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT
  • Patent number: 11009710
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: May 18, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael A. Klug, Paul M. Greco, Brian T. Schowengerdt
  • Publication number: 20200301149
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Application
    Filed: May 7, 2020
    Publication date: September 24, 2020
    Inventors: Robert D. TEKOLSTE, Michael A. KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT
  • Patent number: 10732417
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: August 4, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael A. Klug, Paul M. Greco, Brian T. Schowengerdt
  • Patent number: 10677969
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value. According to additional embodiments, improved approaches are provided to implement deposition of imprint materials onto a substrate, which allow for very precise distribution and deposition of different imprint patterns onto any number of substrate surfaces.
    Type: Grant
    Filed: March 5, 2016
    Date of Patent: June 9, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael A. Klug, Paul M. Greco, Brian T. Schowengerdt
  • Publication number: 20200124782
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 23, 2020
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug
  • Publication number: 20200026085
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 23, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. TEKOLSTE, Michael A. KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT
  • Patent number: 10466486
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 5, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Michael A. Klug, Paul M. Greco, Brian T. Schowengerdt
  • Patent number: 10444422
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 15, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug