Patents by Inventor Michael Knaupp

Michael Knaupp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11045969
    Abstract: A catcher tank assembly is provided for a waterjet cutting machine. The catcher tank assembly includes a catcher tank having a plurality of tank sections detachably coupleable together in a side-by-side manner to collectively define a catcher tank having a desired configuration. The catcher tank assembly further includes a workpiece support system detachably coupleable to an interior cavity of the catcher tank. The workpiece support system may include a plurality of workpiece support modules arrangeable in an array to support a workpiece platform of the waterjet cutting machine. The workpiece platform may be formed, for example, by a series of slats supported transversely to parallel rows of the workpiece support modules. Methods and systems which relate to or include the aforementioned catcher tank assembly are also provided.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 29, 2021
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Andreas Meyer, Steven J. Craigen, Robert J. Mann, Mohamed A. Hashish, Eckhardt R. Ullrich, Thomas R. Loofbourow
  • Patent number: 9358668
    Abstract: A jet receiving receptacle is provided which is coupleable to a high-pressure fluid jet system opposite a nozzle thereof to receive a fluid jet discharged from the nozzle after it acts on a workpiece. The jet receiving receptacle may include an elongated inlet alignable with a direction of travel of the nozzle to receive the fluid jet in a deflected state. The jet receiving receptacle may further include a jet deflection device positioned downstream of the elongated inlet to redirect at least a portion of the fluid jet and a jet rebound device located upstream of the jet deflection device to be impinged on by the redirected portion of the fluid jet. The jet deflection device and jet rebound device may form, in combination with a housing, a device to trap the fluid jet. Fluid jet cutting systems incorporating a jet receiving receptacle and related methods are also provided.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 7, 2016
    Assignee: Ascent Aerospace, LLC
    Inventors: Mohamed A. Hashish, Eckhardt R. Ullrich, Michael Knaupp, Steven J. Craigen, Charles M. Brown, Bruce M. Schuman
  • Publication number: 20140024295
    Abstract: A jet receiving receptacle is provided which is coupleable to a high-pressure fluid jet system opposite a nozzle thereof to receive a fluid jet discharged from the nozzle after it acts on a workpiece. The jet receiving receptacle may include an elongated inlet alignable with a direction of travel of the nozzle to receive the fluid jet in a deflected state. The jet receiving receptacle may further include a jet deflection device positioned downstream of the elongated inlet to redirect at least a portion of the fluid jet and a jet rebound device located upstream of the jet deflection device to be impinged on by the redirected portion of the fluid jet. The jet deflection device and jet rebound device may form, in combination with a housing, a device to trap the fluid jet. Fluid jet cutting systems incorporating a jet receiving receptacle and related methods are also provided.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 23, 2014
    Applicant: Flow International Corporation
    Inventors: Mohamed A. Hashish, Eckhardt R. Ullrich, Michael Knaupp, Steven J. Craigen, Charles M. Brown, Bruce M. Schuman
  • Patent number: 8401692
    Abstract: A system and method for improving a tool tip path of a machine, such as a waterjet cutting machine, by testing and compensating for tool misalignment. The system and method using a sensor positioned to sense a portion of the machine, such as a cutting head assembly, during a sequence of movements thereof and configured to output information indicative of various positions and orientations of a tool of the machine so as to generate an improved tool tip path based on transformation parameters derived from such information.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 19, 2013
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Andreas Meyer
  • Publication number: 20130025425
    Abstract: A catcher tank assembly is provided for a waterjet cutting machine. The catcher tank assembly includes a catcher tank having a plurality of tank sections detachably coupleable together in a side-by-side manner to collectively define a catcher tank having a desired configuration. The catcher tank assembly further includes a workpiece support system detachably coupleable to an interior cavity of the catcher tank. The workpiece support system may include a plurality of workpiece support modules arrangeable in an array to support a workpiece platform of the waterjet cutting machine. The workpiece platform may be formed, for example, by a series of slats supported transversely to parallel rows of the workpiece support modules. Methods and systems which relate to or include the aforementioned catcher tank assembly are also provided.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: Michael Knaupp, Andreas Meyer, Steven J. Craigen, Robert J. Mann, Mohamed A. Hashish, Eckhardt R. Ullrich, Thomas R. Loofbourow
  • Publication number: 20120065769
    Abstract: A system and method for improving a tool tip path of a machine, such as a waterjet cutting machine, by testing and compensating for tool misalignment. The system and method using a sensor positioned to sense a portion of the machine, such as a cutting head assembly, during a sequence of movements thereof and configured to output information indicative of various positions and orientations of a tool of the machine so as to generate an improved tool tip path based on transformation parameters derived from such information.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Inventors: Michael Knaupp, Andreas Meyer
  • Patent number: 7803036
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 28, 2010
    Assignee: Flow International Corporation
    Inventors: Felice M. Sciulli, Andreas Meyer, Michael Knaupp, Charles M. Wakefield, Andrew P. Sterne, Glenn A. Erichsen
  • Patent number: 7703363
    Abstract: An apparatus for generating and manipulating a high-pressure fluid jet includes an assembly coupled to a motion assembly that imparts motion to the assembly along one or more axes. The motion assembly includes two motors coupled together to form a gimbal wrist, each motor having an axis of rotation. The two axes of rotation of the two motors can be perpendicular to each other, but are not necessarily aligned with the manipulator's axes of motion. The high-pressure fluid assembly incorporates a swivel that can rotate about two axes which may be parallel to the two motors' axes of rotation, allowing the high-pressure tubing contained therein to follow the motion imparted by the gimbal wrist of the motion assembly.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 27, 2010
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Charles D. Burnham, Mohamed A. Hashish, Robert J. Mann, Mira K. Sahney, C. David Bader, Andreas Meyer, Sean A. Vaughan, Thomas A. Pesek, Jonathan M. Stewart
  • Patent number: 7635289
    Abstract: A collision detection sensor for a waterjet system provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. An annular pressure switch lying in a first plane provides the signal when radial pressure is applied to a perimeter of the pressure switch via an annular trigger skirt, the trigger skirt applying the radial pressure in response to a collision of the device with an obstacle.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: December 22, 2009
    Assignee: Flow International Corporation
    Inventors: Felice M. Sciulli, Robert J. Mann, Michael Knaupp, Charles M. Wakefield, Chidambaram Raghavan, Andrew P. Sterne
  • Patent number: 7578210
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: August 25, 2009
    Assignee: Flow International Corporation
    Inventors: Felice M. Sciulli, Andreas Meyer, Robert J. Mann, Michael Knaupp, Charles M. Wakefield
  • Patent number: 7464630
    Abstract: An apparatus for generating and manipulating a high-pressure fluid jet includes an end effector assembly coupled to a manipulator that imparts motion to the end effector. The end effector assembly includes a cutting head coupled to a source of high-pressure fluid and to a source of abrasive. A motion assembly is coupled to the cutting head via a clamp positioned around the cutting head. A nozzle body assembly is removably coupled to the cutting head assembly, which may be separated from the cutting head assembly to allow access to the orifice, without removing the cutting head assembly from the clamp. The clamp has a quick release mechanism and an alignment member. The motion assembly includes two motors coupled together to form a gimbal wrist, each motor having a horizontal axis of rotation. The two axes of rotation are perpendicular to each other, but are not necessarily aligned with the manipulator's axes of motion.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: December 16, 2008
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Charles D. Burnham, Mohamed A. Hashish, Robert J. Mann, Mira K. Sahney, C. David Bader, Andreas Meyer, Sean A. Vaughan, Thomas A. Pesek, Jonathan M. Stewart
  • Publication number: 20080110312
    Abstract: An apparatus for generating and manipulating a high-pressure fluid jet includes an assembly coupled to a motion assembly that imparts motion to the assembly along one or more axes. The motion assembly includes two motors coupled together to form a gimbal wrist, each motor having an axis of rotation. The two axes of rotation of the two motors can be perpendicular to each other, but are not necessarily aligned with the manipulator's axes of motion. The high-pressure fluid assembly incorporates a swivel that can rotate about two axes which may be parallel to the two motors' axes of rotation, allowing the high-pressure tubing contained therein to follow the motion imparted by the gimbal wrist of the motion assembly.
    Type: Application
    Filed: January 14, 2008
    Publication date: May 15, 2008
    Applicant: FLOW INTERNATIONAL CORPORATION
    Inventors: Michael Knaupp, Charles Burnham, Mohamed Hashish, Robert Mann, Mira Sahney, C. Bader, Andreas Meyer, Sean Vaughan, Thomas Pesek, Jonathan Stewart
  • Patent number: 7331842
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: February 19, 2008
    Assignee: Flow International Corporation
    Inventors: Felice M. Sciulli, Andreas Meyer, Robert J. Mann, Michael Knaupp, Charles M. Wakefield, Chidambaram Raghavan, Andrew P. Sterne, Glenn A. Erichsen
  • Publication number: 20070190900
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Application
    Filed: April 5, 2007
    Publication date: August 16, 2007
    Applicant: Flow International Corporation
    Inventors: Felice Sciulli, Andreas Meyer, Robert Mann, Michael Knaupp, Charles Wakefield, Chidambaram Raghavan, Andrew Sterne, Glenn Erichsen
  • Publication number: 20070190901
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Application
    Filed: April 5, 2007
    Publication date: August 16, 2007
    Applicant: Flow International Corporation
    Inventors: Felice Sciulli, Andreas Meyer, Robert Mann, Michael Knaupp, Charles Wakefield, Chidambaram Raghavan, Andrew Sterne, Glenn Erichsen
  • Publication number: 20070184758
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Application
    Filed: April 5, 2007
    Publication date: August 9, 2007
    Applicant: Flow International Corporation
    Inventors: Felice Sciulli, Andreas Meyer, Robert Mann, Michael Knaupp, Charles Wakefield, Chidambaram Raghavan, Andrew Sterne, Glenn Erichsen
  • Publication number: 20070180939
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Application
    Filed: April 5, 2007
    Publication date: August 9, 2007
    Applicant: Flow International Corporation
    Inventors: Felice Sciulli, Andreas Meyer, Robert Mann, Michael Knaupp, Charles Wakefield, Chidambaram Raghavan, Andrew Sterne, Glenn Erichsen
  • Publication number: 20060149410
    Abstract: Methods and systems for automating the control of fluid jet orientation parameters are provided. Example embodiments provide a Dynamic Waterjet Control System (a “DWCS”) to dynamically control the orientation of the jet relative to the material being cut as a function of speed and other process parameters. Orientation parameters include, for example, the x-y position of the jet along the cutting path, as well as three dimensional orientation parameters of the jet, such as standoff compensation values and taper and lead angles of the cutting head. In one embodiment, the DWCS uses a set of predictive models to determine these orientation parameters. The DWCS preferably comprises a motion program generator/kernel, a user interface, one or more replaceable orientation and process models, and a communications interface to a fluid jet apparatus controller. Optionally the DWCS also includes a CAD module for designing the target piece.
    Type: Application
    Filed: August 18, 2005
    Publication date: July 6, 2006
    Applicant: Flow International Corporation
    Inventors: Glenn Erichsen, Jiannan Zhou, Mira Sahney, Michael Knaupp, Charles Burnham, Mohamed Hashish
  • Publication number: 20060040590
    Abstract: A contour follower includes a plurality of sensors spaced around a waterjet nozzle, each of the sensors being configured to measure a distance between a working surface and a first plane, perpendicular to a longitudinal axis of the nozzle. The sensors may include hall-effect sensors lying in the first plane and magnets lying in a second plane, parallel to the working surface. A detecting circuit processes signals from the sensors to determine an angle of the working surface, relative to the first plane, and a distance between an aperture of the nozzle and the working surface. A collision detection sensor provides a signal in the event the device approaches to within a selected distance of an obstruction in the plane of the working surface. A shield plate blocks and dampens secondary spray-back of cutting fluid occurring at low angles above the working surface.
    Type: Application
    Filed: August 19, 2004
    Publication date: February 23, 2006
    Applicant: Flow International Corporation
    Inventors: Felice Sciulli, Andreas Meyer, Robert Mann, Michael Knaupp, Charles Wakefield, Chidambaram Raghavan, Andrew Sterne, Glenn Erichsen
  • Patent number: 6996452
    Abstract: Methods and systems for automating the control of fluid jet orientation parameters are provided. Example embodiments provide a Dynamic Waterjet Control System (a “DWCS”) to dynamically control the orientation of the jet relative to the material being cut as a function of speed and other process parameters. Orientation parameters include, for example, the three dimensional orientation parameters of the jet, such as standoff compensation values and taper and lead angles of the cutting head. In one embodiment, the DWCS uses a set of predictive models to determine these orientation parameters. The DWCS preferably comprises a motion program generator/kernel, a user interface, one or more replaceable orientation and process models, and a communications interface to a fluid jet apparatus controller. In one embodiment the DWCS embedded in the controller and performs a “look-ahead” procedure to automatically control cutting head orientation.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: February 7, 2006
    Assignee: Flow International Corporation
    Inventors: Glenn A. Erichsen, Jiannan Zhou, Mira K. Sahney, Michael Knaupp, Charles D. Burnham, Mohamed A. Hashish