Patents by Inventor Michael Kotelyanskii

Michael Kotelyanskii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210318270
    Abstract: Systems and methods for inspecting or characterizing samples, such as by characterizing patterned features or structures of the sample. In an aspect, the technology relates to a method for characterizing a patterned structure of a sample. The method includes directing a pump beam to a first position on a surface of the sample to induce a surface acoustic wave in the sample and directing a probe beam to a second position on the sample, wherein the probe beam is affected by the surface acoustic wave when the probe beam reflects from the surface of the sample. The method also includes detecting the reflected probe beam, analyzing the detected reflected probe beam to identify a frequency mode in the reflected probe beam, and based on the identified frequency mode, determining at least one of a width or a pitch of a patterned feature in the sample.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 14, 2021
    Applicant: Onto Innovation Inc.
    Inventors: Manjusha Mehendale, Michael Kotelyanskii, Priya Mukundhan, Robin Mair
  • Patent number: 10209300
    Abstract: Methods and systems for manufacturing and analyzing interconnect structures in integrated circuit (IC) devices. The methods include forming an interconnect structure, such as a pillar, in an IC device. The pillar is analyzed using an opto-acoustic sensor to quantify physical characteristics used to determine whether the pillar satisfies predetermined quality criterion. The analysis includes capturing an opto-acoustic signal from the pillar and estimating optical parameters for a number of local maxima of the signal. A mode may then be fitted for each of the identified local maxima based on the optical characteristics. The modes and estimated optical parameters may then be iteratively corrected in an order from strongest to weakest local maximum. The corrected values may then be compared to a predicted physical model to identify the physical characteristics of the pillar. If the physical characteristics fall outside of the quality criterion, manufacturing processes may be altered.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: February 19, 2019
    Assignee: Rudolph Technologies, Inc.
    Inventors: Michael Kotelyanskii, Roman Basistyy
  • Patent number: 9991176
    Abstract: Advanced interconnect technologies such as Through Silicon Vias (TSVs) have become an integral part of 3-D integration. Methods and systems and provided for laser-based acoustic techniques in which a short laser pulse generates broadband acoustic waves that propagate in the TSV structure. An optical interferometer detects the surface displacement caused by the acoustic waves reflecting within the structure as well as other acoustic waves traveling near the surface that has information about the structure dimensions and irregularities, such as voids. Features of voids, such as their location, are also identified based on the characteristics of the acoustic wave as it propagates through the via. Measurements typically take few seconds per site and can be easily adopted for in-line process monitoring.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 5, 2018
    Assignees: Rudolph Technologies, Inc., The Regents of the University of Colorado
    Inventors: Manjusha Mehendale, Michael Kotelyanskii, Todd W. Murray, Robin Mair, Priya Mukundhan, Jacob D. Dove, Xueping Ru, Jonathan Cohen, Timothy Kryman
  • Publication number: 20170221778
    Abstract: Advanced interconnect technologies such as Through Silicon Vias (TSVs) have become an integral part of 3-D integration. Methods and systems and provided for laser-based acoustic techniques in which a short laser pulse generates broadband acoustic waves that propagate in the TSV structure. An optical interferometer detects the surface displacement caused by the acoustic waves reflecting within the structure as well as other acoustic waves traveling near the surface that has information about the structure dimensions and irregularities, such as voids. Features of voids, such as their location, are also identified based on the characteristics of the acoustic wave as it propagates through the via. Measurements typically take few seconds per site and can be easily adopted for in-line process monitoring.
    Type: Application
    Filed: September 29, 2015
    Publication date: August 3, 2017
    Applicant: The Regents of the University of Colorado
    Inventors: Manjusha MEHENDALE, Michael KOTELYANSKII, Todd W. MURRAY, Robin MAIR, Priya MUKUNDHAN, Jacob D. DOVE, Xueping RU, Jonathan COHEN, Timothy KRYMAN
  • Publication number: 20170141004
    Abstract: Methods and systems for manufacturing and analyzing interconnect structures in integrated circuit (IC) devices. The methods include forming an interconnect structure, such as a pillar, in an IC device. The pillar is analyzed using an opto-acoustic sensor to quantify physical characteristics used to determine whether the pillar satisfies predetermined quality criterion. The analysis includes capturing an opto-acoustic signal from the pillar and estimating optical parameters for a number of local maxima of the signal. A mode may then be fitted for each of the identified local maxima based on the optical characteristics. The modes and estimated optical parameters may then be iteratively corrected in an order from strongest to weakest local maximum. The corrected values may then be compared to a predicted physical model to identify the physical characteristics of the pillar. If the physical characteristics fall outside of the quality criterion, manufacturing processes may be altered.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 18, 2017
    Applicant: Rudolph Technologies, Inc.
    Inventors: Michael Kotelyanskii, Roman Basistyy
  • Patent number: 9576862
    Abstract: A system and method for identifying one or more characteristics of a structure formed into a substrate is herein disclosed. Surface and bulk acoustic waves are induced in the substrate and travel past a structure of interest where the acoustic waves are sensed. Information concerning one or more characteristics of the structure is encoded in the wave. The encoded information is assessed to determine the characteristic of interest.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: February 21, 2017
    Assignees: RUDOLPH TECHNOLOGIES, INC., THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Todd Murray, Manjusha Mehendale, Michael Kotelyanskii, Robin Mair, Priya Mukundhan
  • Publication number: 20160043008
    Abstract: A system and method for identifying one or more characteristics of a structure formed into a substrate is herein disclosed. Surface and bulk acoustic waves are induced in the substrate and travel past a structure of interest where the acoustic waves are sensed. Information concerning one or more characteristics of the structure is encoded in the wave. The encoded information is assessed to determine the characteristic of interest.
    Type: Application
    Filed: February 5, 2014
    Publication date: February 11, 2016
    Inventors: Todd MURRAY, Manjusha MEHENDALE, Michael KOTELYANSKII, Robin MAIR, Priya MUKUNDHAN
  • Patent number: 9140601
    Abstract: An automatically adjustable method for use in opto-acoustic metrology or other types of metrology operations is described. The method includes modifying the operation of a metrology system that uses a PSD style sensor arrangement. The method may be used to quickly adjust the operation of a metrology system to ensure that the data obtained therefrom are of the desired quality. Further, the method is useful in searching for and optimizing data that is or can be correlated to substrate or sample features or characteristics that of interest. Apparatus and computer readable media are also described.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: September 22, 2015
    Assignee: Rudolph Technologies, Inc.
    Inventors: Manjusha Mehendale, Michael Kotelyanskii, Priya Mukundhan, Michael Colgan, Wei Zhou
  • Publication number: 20140103188
    Abstract: An automatically adjustable method for use in opto-acoustic metrology or other types of metrology operations is described. The method includes modifying the operation of a metrology system that uses a PSD style sensor arrangement. The method may be used to quickly adjust the operation of a metrology system to ensure that the data obtained therefrom are of the desired quality. Further, the method is useful in searching for and optimizing data that is or can be correlated to substrate or sample features or characteristics that of interest. Apparatus and computer readable media are also described.
    Type: Application
    Filed: January 27, 2012
    Publication date: April 17, 2014
    Inventors: Manjusha Mehendale, Michael Kotelyanskii, Priya Mukundhan, Michael Colgan, Wei Zhou
  • Publication number: 20090306941
    Abstract: A method includes accessing a structure model defining a cross-sectional profile of a structure on a sample. The cross-sectional profile is at least partially defined using a set of blocks. Each of the blocks includes a number of vertices. One or more of the vertices are expressed using one or more algebraic relationships between a number of parameters corresponding to the structure. Information is evaluated from the structure model to produce expected metrology data for a scatterometry-based optical metrology. The expected metrology data is suitable for use for determining one or more of the number of parameters corresponding to the structure. Apparatus are also disclosed.
    Type: Application
    Filed: May 14, 2007
    Publication date: December 10, 2009
    Inventors: Michael Kotelyanskii, Xueping Ru, Robert G. Wolf, Yue Yang
  • Publication number: 20060256916
    Abstract: A system comprising a means for generating an optical pump beam pulse and for directing the optical pump beam pulse to a first area of a surface of a sample having a plurality of film layers to generate an acoustic signal, a means for generating an x-ray probe pulse and for directing the x-ray probe pulse to a second area of the surface, a means for detecting an intensity of a diffracted x-ray probe pulse the intensity varying in response to the acoustic signal to form a probe pulse response signal, and a means for calculating an expected transient response to a theoretical acoustic signal propagated through a model of the sample and fitting the probe pulse response to the transient response to derive at least one characteristic of the sample.
    Type: Application
    Filed: May 13, 2005
    Publication date: November 16, 2006
    Inventors: Michael Kotelyanskii, Andrey Vertikov, Christopher Morath
  • Publication number: 20060072120
    Abstract: An optical metrology system is provided with a data analysis method to determine the elastic moduli of optically transparent dielectric films such as silicon dioxide, other carbon doped oxides over metal or semiconductor substrates. An index of refraction is measured by an ellipsometer and a wavelength of a laser beam is measured using a laser spectrometer. The angle of refraction is determined by directing a light pulse focused onto a wafer surface, measuring a first set of x1, y1, and z1 coordinates, moving the wafer in the z direction, directing the light pulse onto the wafer surface and measuring a second set of x2, y2 and z2 coordinates, using the coordinates to calculate an angle of incidence, calculating an angle of refraction from the calculated angle of incidence, obtaining a sound velocity v, from the calculated angle of refraction and using the determined sound velocity v, to calculate a bulk modulus.
    Type: Application
    Filed: October 6, 2004
    Publication date: April 6, 2006
    Inventors: Sean Leary, Guray Tas, Christopher Morath, Michael Kotelyanskii, Tong Zheng, Guenadiy Lazarov, Andre Miller, George Antonelli, Jamie Ludke
  • Patent number: 7019845
    Abstract: An optical metrology system is provided with a data analysis method to determine the elastic moduli of optically transparent dielectric films such as silicon dioxide, other carbon doped oxides over metal or semiconductor substrates. An index of refraction is measured by an ellipsometer and a wavelength of a laser beam is measured using a laser spectrometer. The angle of refraction is determined by directing a light pulse focused onto a wafer surface, measuring a first set of x1, y1, and z1 coordinates, moving the wafer in the z direction, directing the light pulse onto the wafer surface and measuring a second set of x2, y2 and z2 coordinates, using the coordinates to calculate an angle of incidence, calculating an angle of refraction from the calculated angle of incidence, obtaining a sound velocity v, from the calculated angle of refraction and using the determined sound velocity v, to calculate a bulk modulus.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: March 28, 2006
    Assignee: Rudolph Technologies, Inc.
    Inventors: Sean P. Leary, Guray Tas, Christopher J. Morath, Michael Kotelyanskii, Tong Zheng, Guenadiy Lazarov, Andre D. Miller, George A. Antonelli, Jamie I. Ludke