Patents by Inventor Michael Kroepfl

Michael Kroepfl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908203
    Abstract: LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. Improved techniques for processing the point cloud data that has been collected are provided. The improved techniques include mapping one or more point cloud data points into a depth map, the one or more point cloud data points being generated using one or more sensors; determining one or more mapped point cloud data points within a bounded area of the depth map, and detecting, using one or more processing units and for an environment surrounding a machine corresponding to the one or more sensors, a location of one or more entities based on the one or more mapped point cloud data points.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 20, 2024
    Assignee: NVIDIA Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20230357076
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 9, 2023
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Viabhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Publication number: 20230294726
    Abstract: One or more embodiments of the present disclosure relate to aligning sensor data. In some embodiments, the aligning may be used for performing localization. In these or other embodiments, the aligning may be used for map creation.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Amir AKBARZADEH, Andrew CARLEY, Birgit HENKE, Si LU, Ivana STOJANOVIC, Jugnu AGRAWAL, Michael KROEPFL, Yu SHENG
  • Publication number: 20230296748
    Abstract: One or more embodiments of the present disclosure relate to generation of map data. In these or other embodiments, the generation of the map data may include determining whether objects indicated by the sensor data are static objects or dynamic objects. Additionally or alternatively, sensor data may be removed or included in the map data based on determinations as to whether it corresponds to static objects or dynamic objects.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Amir AKBARZADEH, Andrew CARLEY, Birgit HENKE, Si LU, Ivana STOJANOVIC, Jugnu AGRAWAL, Michael KROEPFL, Yu SHENG, David NISTER, Enliang ZHENG
  • Publication number: 20230296758
    Abstract: Embodiments of the present disclosure relate to generating RADAR (RAdio Detection And Ranging) point clouds based on RADAR data obtained from one or more RADAR sensors disposed on one or more ego-machines. In these or other embodiments, the RADAR point clouds may be used to generate map data. Additionally or alternatively, the RADAR point clouds may be used for performing localization.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Amir AKBARZADEH, Andrew CARLEY, Birgit HENKE, Si LU, Ivana STOJANOVIC, Jugnu AGRAWAL, Michael KROEPFL, Yu SHENG, David NISTER, Enliang ZHENG
  • Publication number: 20230296756
    Abstract: One or more embodiments of the present disclosure relate to generating RADAR (RAdio Detection And Ranging) point clouds based on RADAR data obtained from one or more RADAR sensors disposed on one or more ego-machines. In these or other embodiments, the RADAR point clouds may be communicated to a distributed map system that is configured to generate map data based on the RADAR point clouds. In some embodiments of the present disclosure, certain compression operations may be performed on the RADAR point clouds to reduce the amount of data that is communicated from the ego-machines to the map system.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Amir AKBARZADEH, Andrew CARLEY, Birgit HENKE, Si LU, Ivana STOJANOVIC, Jugnu AGRAWAL, Michael KROEPFL, Yu SHENG, David NISTER, Enliang ZHENG, Niharika ARORA
  • Patent number: 11698272
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 11, 2023
    Assignee: NVIDIA Corporation
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Vaibhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Patent number: 11477374
    Abstract: A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 18, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Michael Kroepfl, Michael Gruber, Martin Josef Ponticelli, Stephen Lawler, Joachim Bauer, Franz W. Leberl, Konrad Karner, Zanin Cosic, Hannes Hegenbarth, Gur Kimchi, John Charles Curlander
  • Publication number: 20220237925
    Abstract: LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping one or more point cloud data points into a depth map, the one or more point cloud data points being generated using one or more sensors; determining one or more mapped point cloud data points within a bounded area of the depth map, and detecting, using one or more processing units and for an environment surrounding a machine corresponding to the one or more sensors, a location of one or more entities based on the one or more mapped point cloud data points.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 11301697
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping 3D point cloud data points into a 2D depth map, fetching a group of the mapped 3D point cloud data points that are within a bounded window of the 2D depth map; and generating geometric space parameters based on the group of the mapped 3D point cloud data points. The generated geometric space parameters may be used for object motion, obstacle detection, freespace detection, and/or landmark detection for an area surrounding a vehicle.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: April 12, 2022
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20210063200
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 4, 2021
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Vaibhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Publication number: 20200357160
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping 3D point cloud data points into a 2D depth map, fetching a group of the mapped 3D point cloud data points that are within a bounded window of the 2D depth map; and generating geometric space parameters based on the group of the mapped 3D point cloud data points. The generated geometric space parameters may be used for object motion, obstacle detection, freespace detection, and/or landmark detection for an area surrounding a vehicle.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20200344414
    Abstract: A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Michael Kroepfl, Michael Gruber, Martin Josef Ponticelli, Stephen Lawler, Joachim Bauer, Franz W. Leberl, Konrad Karner, Zanin Cosic, Hannes Hegenbarth, Gur Kimchi, John Charles Curlander
  • Patent number: 10776983
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 15, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10769840
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include using a three dimensional polar depth map to assist in performing nearest neighbor analysis on point cloud data for object detection, trajectory detection, freespace detection, obstacle detection, landmark detection, and providing other geometric space parameters.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10715724
    Abstract: A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: July 14, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Kroepfl, Michael Gruber, Martin Josef Ponticelli, Stephen Lawler, Joachim Bauer, Franz W. Leberl, Konrad Karner, Zanin Cosic, Hannes Hegenbarth, Gur Kimchi, John Charles Curlander
  • Publication number: 20190266779
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include using a three dimensional polar depth map to assist in performing nearest neighbor analysis on point cloud data for object detection, trajectory detection, freespace detection, obstacle detection, landmark detection, and providing other geometric space parameters.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 29, 2019
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20190266736
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 29, 2019
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20150326783
    Abstract: A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
    Type: Application
    Filed: July 3, 2015
    Publication date: November 12, 2015
    Inventors: Michael Kroepfl, Michael Gruber, Martin Josef Ponticelli, Stephen Lawler, Joachim Bauer, Franz W. Leberl, Konrad Karner, Zanin Cosic, Hannes Hegenbarth, Gur Kimchi, John Charles Curlander
  • Patent number: 9091755
    Abstract: A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: July 28, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Kroepfl, Michael Gruber, Martin Josef Ponticelli, Stephen Lawler, Joachim Bauer, Franz W. Leberl, Konrad Karner, Zanin Cosic, Hannes Hegenbarth, Gur Kimchi, John Charles Curlander