Patents by Inventor Michael L. Duffy

Michael L. Duffy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10917081
    Abstract: An apparatus controls a high-power drive device external to a package of a gate driver circuit. A first circuit charges the control node over a first length of time in response to a first signal through the first node indicating an absence of a fault condition and a first level of a control signal. A second circuit discharges the control node over a second length of time in response to a second signal through the second node indicating the absence of the fault condition and a second level of a control signal. A third circuit includes a current amplifier and is configured as a soft shutdown path to discharge the control node over a third length of time in response to the first signal through the first node indicating a presence of the fault condition. The third length of time is different from the second length of time.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: February 9, 2021
    Assignee: Silicon Laboratories Inc.
    Inventors: Long Nguyen, Ion C. Tesu, Michael L. Duffy, John N. Wilson
  • Patent number: 9698654
    Abstract: An apparatus for controlling a high-power drive device external to a package of a motor drive circuit includes a motor drive circuit. The motor drive circuit includes a driver to control the high-power drive device based on a first reference voltage, a second reference voltage, and a control signal based on a received control signal. A fault circuit generates a failure indicator based on a voltage across terminals of the high-power drive device. A fault condition is based on the failure indicator. A first terminal coupled to the driver charges a node of the high-power drive device over a first length of time in response to an absence of the fault condition and a first level of the control signal. A second terminal coupled to the driver discharges the node over a second length of time different from the first length of time.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: July 4, 2017
    Assignee: Silicon Laboratories Inc.
    Inventors: Paulo Santos, Tufan Karalar, Michael J. Mills, Ross Sabolcik, Rudye McGlothlin, Michael L. Duffy, András Vince Horvath
  • Publication number: 20150085403
    Abstract: An apparatus for controlling a high-power drive device external to a package of a motor drive circuit includes a motor drive circuit. The motor drive circuit includes a driver to control the high-power drive device based on a first reference voltage, a second reference voltage, and a control signal based on a received control signal. A fault circuit generates a failure indicator based on a voltage across terminals of the high-power drive device. A fault condition is based on the failure indicator. A first terminal coupled to the driver charges a node of the high-power drive device over a first length of time in response to an absence of the fault condition and a first level of the control signal. A second terminal coupled to the driver discharges the node over a second length of time different from the first length of time.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Inventors: Paulo Santos, Tufan Karalar, Michael J. Mills, Ross Sabolcik, Rudye McGlothlin, Michael L. Duffy, András Vince Horvath
  • Patent number: 8502584
    Abstract: One aspect of the present invention is directed to a circuit that includes an amplifier circuit disposed between an isolation link and a Schmitt trigger circuit to amplify a differential signal communicated over the isolation link and supply the amplified signal to the Schmitt trigger circuit. In turn, the Schmitt trigger circuit is coupled to the amplifier circuit to receive the differential signal and to supply a differential output signal corresponding to the differential signal communicated over the isolation link.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 6, 2013
    Assignee: Silicon Laboratories Inc
    Inventors: Zhiwei Dong, Jing Li, Michael L. Duffy, Michael Mills
  • Patent number: 8402823
    Abstract: A metering system can include a pull up circuit to be selectively coupled between a voltage node and a metering line that communicates a signal indicative of status of a flow line through which a metered substance flows. An impedance of the pull up circuit is set to reduce power consumption based on a calibration, and the pull up circuit can be disabled between sampling of the signal to reduce power consumption.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 26, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Marty Lynn Pflum, Michael L. Duffy, Douglas S. Piasecki, Michael Keith Odland
  • Publication number: 20110291678
    Abstract: A metering system can include a pull up circuit to be selectively coupled between a voltage node and a metering line that communicates a signal indicative of status of a flow line through which a metered substance flows. An impedance of the pull up circuit is set to reduce power consumption based on a calibration, and the pull up circuit can be disabled between sampling of the signal to reduce power consumption.
    Type: Application
    Filed: March 31, 2011
    Publication date: December 1, 2011
    Inventors: Marty Lynn Pflum, Michael L. Duffy, Douglas S. Piasecki, Michael Keith Odland
  • Patent number: 6839394
    Abstract: A scheme (e.g., one or more methods, circuits and/or architectures) for detecting the difference in frequencies between two periodic (e.g., clock) signals and/or for reliably assuring the frequency of an oscillating circuit (e.g., a voltage controlled oscillator [VCO], a phase locked loop [PLL] containing a VCO, etc.). The present invention is particularly useful for clock recovery in data communications devices and more particularly in asynchronous transfer mode (ATM) devices, such as SONET/SDH transmitters, receivers and/or transceivers.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: January 4, 2005
    Assignee: Cypress Semiconductor Corp.
    Inventor: Michael L. Duffy
  • Patent number: 6665360
    Abstract: An apparatus comprising a first circuit, a second circuit and a third circuit. The first circuit may be configured to generate (i) a first control signal, (ii) a second control signal, (iii) one or more first clock signals and (iv) a first data signal operating at a first speed in response to (i) an input data signal and (ii) a reference clock signal. The second circuit may be configured to generate one or more intermediate data signals operating at a second speed in response to (i) the first control signal, (ii) the one or more first clock signals and (iii) the first data signal. The third circuit may be configured to generate an output data signal operating at a third speed in response to (i) the second control signal and (ii) the one or more intermediate data signals.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: December 16, 2003
    Assignee: Cypress Semiconductor Corp.
    Inventor: Michael L. Duffy
  • Patent number: 6560306
    Abstract: A parallel sampling phase detector with linear output response. The parallel sampling phase detector for use in data recovery. The device includes a voltage controlled oscillator (VCO) that generates ten separate phase signals using a five stage ring oscillator. Five linear phase detectors are employed in the device, each operating during one of five “window” intervals. The “window” intervals are non-overlapping, and are generated using preselected ones of the VCO output phases. The linear phase detectors each generate, respectively, a variable pulsewidth pump up signal wherein the pulsewidth of the pump up signal is proportional to a phase difference between the input data signal applied to the phase detector, and the output phase signals of the VCO. Each phase detector also generates a pump down signal that has a fixed pulsewidth.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: May 6, 2003
    Assignee: Cypress Semiconductor Corp.
    Inventors: Michael L. Duffy, Mohammad J. Navabi
  • Patent number: 6535527
    Abstract: An apparatus comprising a first circuit, a deserializer circuit and a framer circuit. The first circuit may be configured to present a clock signal and a data signal having a second data rate in response to an input signal having a first data rate. The deserializer circuit may comprise (a) a parallel register bank configured to generate an output signal in response to (i) the clock signal, (ii) the data signal and (iii) one or more select signals and (b) a state machine configured to generate the one or more select signals in response to one or more control signals. The framer circuit may be configured to generate the one or more control signals in response to (i) one or more input control signals and (ii) the output signal.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: March 18, 2003
    Assignee: Cypress Semiconductor Corp.
    Inventor: Michael L. Duffy
  • Patent number: 6513127
    Abstract: An apparatus comprising a first circuit configured to present one or more control indication signals and (ii) a control clock signal in response to (i) one or more select signals, (ii) one or more clock signals and (iii) one or more divider control signals. The first circuit may be configured to select an active channel from a plurality of channels in response to the one or more select signals.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: January 28, 2003
    Assignee: Cypress Semiconductor Corp.
    Inventors: Michael L. Duffy, James H. Jones
  • Patent number: 6385265
    Abstract: A circuit and method comprising a charge pump having a first and a second differential element. The charge pump may be configured to generate a first and a second output signal in response to the first and second differential elements. The first differential element may comprise (i) a first unity gain buffer and (ii) a first and a second transistor pair configured to receive a first and second control signal. The second differential element may comprise (i) a second unity gain buffer and (ii) a third and a fourth transistor pair configured to receive the first and second control signals. The first and second unity gain buffers may stabilize the source nodes of each of the transistors pairs.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: May 7, 2002
    Assignee: Cypress Semiconductor Corp.
    Inventors: Michael L. Duffy, Bertrand J. Williams, Phillip J. Kruczkowski, Jaideep Prakash, Nathan Y. Moyal
  • Patent number: 6265996
    Abstract: An apparatus comprising a first circuit and a deserializer circuit. The first circuit may be configured to present a clock signal and a data signal having a second data rate in response to an input signal having a first data rate. The deserializer circuit may be configured to generate an output signal in response to (i) the clock signal, (ii) the data signal and (iii) one or more select signals.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: July 24, 2001
    Assignee: Cypress Semiconductor Corp.
    Inventor: Michael L. Duffy
  • Patent number: 6084479
    Abstract: An apparatus comprising a phase-locked loop, a select circuit and a control circuit. The phase-locked loop may be configured to generate a feedback signal (along with a buffered output signal) in response to a reference clock and a control signal. A select circuit may be configured to present a reference clock signal in response to a plurality of input clock signals and a select signal. The slew control circuit may be configured to generate the control signal in response to the select signal, and the feedback signal. The control circuit may be used to reduce noise presented to the phase-locked loop and may allow for a rapid initial frequency acquisition of the PLL to the reference frequency.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: July 4, 2000
    Assignee: Cypress Semiconductor Corp.
    Inventors: Michael L. Duffy, Paul H. Scott
  • Patent number: 6026134
    Abstract: A parallel sampling phase detector with linear output response is disclosed. The parallel sampling phase detector for use in data recovery. The device includes a voltage controlled oscillator (VCO) that generates ten separate phase signals using a five stage ring oscillator. Five linear phase detectors are employed in the device, each operating during one of five "window" intervals. The "window" intervals are non-overlapping, and are generated using preselected ones of the VCO output phases. The linear phase detectors each generate, respectively, a variable pulsewidth pump up signal wherein the pulsewidth of the pump up signal is proportional to a phase difference between the input data signal applied to the phase detector, and the output phase signals of the VCO. Each phase detector also generates a pump down signal that has a fixed pulsewidth.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: February 15, 2000
    Assignee: Cypress Semiconductor Corp.
    Inventors: Michael L. Duffy, Mohammad J. Navabi
  • Patent number: 5926041
    Abstract: A parallel sampling phase detector with linear output response is disclosed. The parallel sampling phase detector is disclosed for use in data recovery. The device includes a voltage controlled oscillator (VCO) that generates ten separate phase signals using a five stage ring oscillator. Five linear phase detectors are employed in the device, each operating during one of five "window" intervals. The "window" intervals are non-overlapping, and are generated using preselected ones of the VCO output phases. The linear phase detectors each generate, respectively, a variable pulsewidth pump up signal wherein the pulsewidth of the pump up signal is proportional to a phase difference between the input data signal applied to the phase detector, and the output phase signals of the VCO. Each phase detector also generates a pump down signal that has a fixed pulsewidth.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: July 20, 1999
    Assignee: Cypress SemiconductorCorp.
    Inventors: Michael L. Duffy, Mohammad J. Navabi
  • Patent number: 5818370
    Abstract: A calibrated digital-to-analog converter (DAC) is provided that includes a DAC having an interpolation circuit (40) and delta-sigma converter (44). The output of the delta-sigma converter (44) is input to a one-bit DAC (48) and the output thereof filtered by an analog low pass filter section (50). During a calibration procedure, a calibrated analog-to-digital converter (ADC) (22) is utilized that is operable to receive the analog output of the DAC with a "0" value input thereto through a multiplexer (58). The output of the ADC (22) represents the inherent error in the delta-sigma converter (44) and the analog filter section (50). This is stored in a register (62). In a second step of the operation, the contents of the register (62) are input through the interpolation circuit for interpolation thereof and storage in an offset register/latch circuit (56).
    Type: Grant
    Filed: September 28, 1993
    Date of Patent: October 6, 1998
    Assignee: Crystal Semiconductor Corporation
    Inventors: Navdeep Singh Sooch, Michael L. Duffy
  • Patent number: 5578271
    Abstract: A photoionization detector (PID) and an improved halogen specific detector are disclosed, for direct connection of the PID outlet to the halogen specific detector inlet. The tandem detector is used for detection of volatile organic compounds and the like. A jet assembly and seal between the PID and halogen specific detector provide a leak free and upswept dead volume-free connection between the two detectors.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: November 26, 1996
    Assignee: O.I. Corporation
    Inventors: Richard K. Simon, Michael L. Duffy, Michael J. Tanner, Mathias N. Barringer, Nathan C. Rawls
  • Patent number: 5248970
    Abstract: A calibrated digital-to-analog converter (DAC) is provided that includes a DAC having an interpolation circuit (40) and delta-sigma converter (44). The output of the delta-sigma converter (44) is input to a one-bit DAC (48) and the output thereof filtered by an analog low pass filter section (50). During a calibration procedure, a calibrated analog-to-digital converter (ADC) (22) is utilized that is operable to receive the analog output of the DAC with a "0" value input thereto through a multiplexer (58). The output of the ADC (22) represents the inherent error in the delta-sigma converter (44) and the analog filter section (50). This is stored in a register (62). In a second step of the operation, the contents of the register (62) are input through the interpolation circuit for interpolation thereof and storage in an offset register/latch circuit (56).
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: September 28, 1993
    Assignee: Crystal Semiconductor Corp.
    Inventors: Navdeep S. Sooch, Michael L. Duffy
  • Patent number: 5196850
    Abstract: A delta-sigma modulator for a digital-to-analog converter includes a single adder (60) that has one input thereof multiplexed by multiplexer (62). Four shift registers (64), (66), (68) and (70) are connected in a serial fashion such that the data output by the adder (60) is input to the shift register (64) and the other input of adder (60) is connected to the output of register (70). In operation, the multiplexer (62) first selects the input data for input to the one input of adder (60) and selects the output of register (70) for the other input. This represents the first stage of integration wherein the accumulated value from a previous cycle is added to the present data. The output of the first stage of integration will be cycled through the registers for each overall cycle of the delta-sigma modulator. In the second stage of integration on the next clock cycle of the 4.times. clock, the multiplexer (62) selects the output of the register (68) for adding to the output of the register (70).
    Type: Grant
    Filed: November 13, 1991
    Date of Patent: March 23, 1993
    Assignee: Crystal Semiconductor
    Inventors: Michael L. Duffy, Navdeep S. Sooch