Patents by Inventor Michael L. Hattendorf

Michael L. Hattendorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11183432
    Abstract: Integrated circuits including MOSFETs with selectively recessed gate electrodes. Transistors having recessed gate electrodes with reduced capacitive coupling area to adjacent source and drain contact metallization are provided alongside transistors with gate electrodes that are non-recessed and have greater z-height. In embodiments, analog circuits employ transistors with gate electrodes of a given z-height while logic gates employ transistors with recessed gate electrodes of lesser z-height. In embodiments, subsets of substantially planar gate electrodes are selectively etched back to differentiate a height of the gate electrode based on a given transistor's application within a circuit.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 23, 2021
    Assignee: Intel Corporation
    Inventors: Srijit Mukherjee, Christopher J. Wiegand, Tyler J. Weeks, Mark Y. Liu, Michael L. Hattendorf
  • Publication number: 20210359110
    Abstract: Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions are described. For example, a semiconductor structure includes a plurality of parallel semiconductor fins disposed above and continuous with a semiconductor substrate. An isolation structure is disposed above the semiconductor substrate and adjacent to lower portions of each of the plurality of parallel semiconductor fins. An upper portion of each of the plurality of parallel semiconductor fins protrudes above an uppermost surface of the isolation structure. Epitaxial source and drain regions are disposed in each of the plurality of parallel semiconductor fins adjacent to a channel region in the upper portion of the semiconductor fin. The epitaxial source and drain regions do not extend laterally over the isolation structure.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Szuya S. LIAO, Michael L. HATTENDORF, Tahir GHANI
  • Patent number: 11127841
    Abstract: Confined epitaxial regions for semiconductor devices and methods of fabricating semiconductor devices having confined epitaxial regions are described. For example, a semiconductor structure includes a plurality of parallel semiconductor fins disposed above and continuous with a semiconductor substrate. An isolation structure is disposed above the semiconductor substrate and adjacent to lower portions of each of the plurality of parallel semiconductor fins. An upper portion of each of the plurality of parallel semiconductor fins protrudes above an uppermost surface of the isolation structure. Epitaxial source and drain regions are disposed in each of the plurality of parallel semiconductor fins adjacent to a channel region in the upper portion of the semiconductor fin. The epitaxial source and drain regions do not extend laterally over the isolation structure.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 21, 2021
    Assignee: Intel Corporation
    Inventors: Szuya S. Liao, Michael L. Hattendorf, Tahir Ghani
  • Publication number: 20210249523
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A first isolation structure separates a first end of a first portion of the fin from a first end of a second portion of the fin, the first end of the first portion of the fin having a depth. A gate structure is over the top of and laterally adjacent to the sidewalls of a region of the first portion of the fin. A second isolation structure is over a second end of a first portion of the fin, the second end of the first portion of the fin having a depth different than the depth of the first end of the first portion of the fin.
    Type: Application
    Filed: April 16, 2021
    Publication date: August 12, 2021
    Inventors: Tahir GHANI, Byron HO, Curtis W. WARD, Michael L. HATTENDORF, Christopher P. AUTH
  • Publication number: 20210249524
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.
    Type: Application
    Filed: April 28, 2021
    Publication date: August 12, 2021
    Inventors: Subhash M. JOSHI, Jeffrey S. LEIB, Michael L. HATTENDORF
  • Patent number: 11088261
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
  • Publication number: 20210234022
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes first and second gate dielectric layers over a fin. First and second gate electrodes are over the first and second gate dielectric layers, respectively, the first and second gate electrodes both having an insulating cap having a top surface. First dielectric spacer are adjacent the first side of the first gate electrode. A trench contact structure is over a semiconductor source or drain region adjacent first and second dielectric spacers, the trench contact structure comprising an insulating cap on a conductive structure, the insulating cap of the trench contact structure having a top surface substantially co-planar with the insulating caps of the first and second gate electrodes.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 29, 2021
    Inventors: Andrew W. YEOH, Tahir GHANI, Atul MADHAVAN, Michael L. HATTENDORF, Christopher P. AUTH
  • Publication number: 20210217877
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first silicon fin having a longest dimension along a first direction. A second silicon fin having a longest dimension is along the first direction. An insulator material is between the first silicon fin and the second silicon fin. A gate line is over the first silicon fin and over the second silicon fin along a second direction, the second direction orthogonal to the first direction, the gate line having a first side and a second side, wherein the gate line has a discontinuity over the insulator material, the discontinuity filled by a dielectric plug.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Byron HO, Michael L. HATTENDORF, Christopher P. AUTH
  • Patent number: 11063133
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A first isolation structure separates a first end of a first portion of the fin from a first end of a second portion of the fin, the first end of the first portion of the fin having a depth. A gate structure is over the top of and laterally adjacent to the sidewalls of a region of the first portion of the fin. A second isolation structure is over a second end of a first portion of the fin, the second end of the first portion of the fin having a depth different than the depth of the first end of the first portion of the fin.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Tahir Ghani, Byron Ho, Curtis W. Ward, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 11031487
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes first and second gate dielectric layers over a fin. First and second gate electrodes are over the first and second gate dielectric layers, respectively, the first and second gate electrodes both having an insulating cap having a top surface. First dielectric spacer are adjacent the first side of the first gate electrode. A trench contact structure is over a semiconductor source or drain region adjacent first and second dielectric spacers, the trench contact structure comprising an insulating cap on a conductive structure, the insulating cap of the trench contact structure having a top surface substantially co-planar with the insulating caps of the first and second gate electrodes.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Andrew W. Yeoh, Tahir Ghani, Atul Madhavan, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 11011616
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first silicon fin having a longest dimension along a first direction. A second silicon fin having a longest dimension is along the first direction. An insulator material is between the first silicon fin and the second silicon fin. A gate line is over the first silicon fin and over the second silicon fin along a second direction, the second direction orthogonal to the first direction, the gate line having a first side and a second side, wherein the gate line has a discontinuity over the insulator material, the discontinuity filled by a dielectric plug.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Byron Ho, Michael L. Hattendorf, Christopher P. Auth
  • Publication number: 20210143051
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin comprising silicon, the fin having a lower fin portion and an upper fin portion. A first insulating layer is directly on sidewalls of the lower fin portion of the fin, wherein the first insulating layer is a non-doped insulating layer comprising silicon and oxygen. A second insulating layer is directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin, the second insulating layer comprising silicon and nitrogen. A dielectric fill material is directly laterally adjacent to the second insulating layer directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 13, 2021
    Inventors: Michael L. HATTENDORF, Curtis WARD, Heidi M. MEYER, Tahir GHANI, Christopher P. AUTH
  • Patent number: 10985267
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, a method includes forming a plurality of fins, individual ones of the plurality of fins along a first direction. A plurality of gate structures is formed over the plurality of fins, individual ones of the gate structures along a second direction orthogonal to the first direction. A dielectric material structure is formed between adjacent ones of the plurality of gate structures. A portion of one of the plurality of gate structures is removed to expose a portion of each of the plurality of fins. The exposed portion of each of the plurality of fins is removed. An insulating layer is formed in locations of the removed portion of each of the plurality of fins.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: April 20, 2021
    Assignee: Intel Corporation
    Inventors: Tahir Ghani, Byron Ho, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 10964800
    Abstract: Semiconductor devices having fin-end stress-inducing features, and methods of fabricating semiconductor devices having fin-end stress-inducing features, are described. In an example, a semiconductor structure includes a semiconductor fin protruding through a trench isolation region above a substrate. The semiconductor fin has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. A gate electrode is over a region of the top surface and laterally adjacent to a region of the pair of sidewalls of the semiconductor fin. The gate electrode is between the first end and the second end of the semiconductor fin. A first dielectric plug is at the first end of the semiconductor fin. A second dielectric plug is at the second end of the semiconductor fin.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Byron Ho, Michael L. Hattendorf, Jeanne L. Luce, Ebony L. Mays, Erica J. Thompson
  • Publication number: 20210091206
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. An isolation structure surrounds a lower fin portion, the isolation structure comprising an insulating material having a top surface, and a semiconductor material on a portion of the top surface of the insulating material, wherein the semiconductor material is separated from the fin. A gate dielectric layer is over the top of an upper fin portion and laterally adjacent the sidewalls of the upper fin portion, the gate dielectric layer further on the semiconductor material on the portion of the top surface of the insulating material. A gate electrode is over the gate dielectric layer.
    Type: Application
    Filed: November 20, 2020
    Publication date: March 25, 2021
    Inventors: Byron HO, Steven JALOVIAR, Jeffrey S. LEIB, Michael L. HATTENDORF, Christopher P. AUTH
  • Patent number: 10957782
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: March 23, 2021
    Assignee: Intel Corporation
    Inventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
  • Patent number: 10943817
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a plurality of conductive interconnect lines in and spaced apart by an inter-layer dielectric (ILD) layer above a substrate. Individual ones of the plurality of conductive interconnect lines have an upper surface below an upper surface of the ILD layer. An etch-stop layer is on and conformal with the ILD layer and the plurality of conductive interconnect lines, the etch-stop layer having a non-planar upper surface with an uppermost portion of the non-planar upper surface over the ILD layer and a lowermost portion of the non-planar upper surface over the plurality of conductive interconnect lines.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: March 9, 2021
    Assignee: Intel Corporation
    Inventors: Andrew W. Yeoh, Ruth Brain, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 10930753
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin comprising silicon, the fin having a lower fin portion and an upper fin portion. A first insulating layer is directly on sidewalls of the lower fin portion of the fin, wherein the first insulating layer is a non-doped insulating layer comprising silicon and oxygen. A second insulating layer is directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin, the second insulating layer comprising silicon and nitrogen. A dielectric fill material is directly laterally adjacent to the second insulating layer directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Michael L. Hattendorf, Curtis Ward, Heidi M. Meyer, Tahir Ghani, Christopher P. Auth
  • Publication number: 20210043520
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a P-type semiconductor device above a substrate and including first and second semiconductor source or drain regions adjacent first and second sides of a first gate electrode. A first metal silicide layer is directly on the first and second semiconductor source or drain regions. An N-type semiconductor device includes third and fourth semiconductor source or drain regions adjacent first and second sides of a second gate electrode. A second metal silicide layer is directly on the third and fourth semiconductor source or drain regions, respectively. The first metal silicide layer comprises at least one metal species not included in the second metal silicide layer.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 11, 2021
    Inventors: Jeffrey S. LEIB, Srijit MUKHERJEE, Vinay BHAGWAT, Michael L. HATTENDORF, Christopher P. AUTH
  • Publication number: 20210043754
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a semiconductor substrate comprising an N well region having a semiconductor fin protruding therefrom. A trench isolation layer is on the semiconductor substrate around the semiconductor fin, wherein the semiconductor fin extends above the trench isolation layer. A gate dielectric layer is over the semiconductor fin. A conductive layer is over the gate dielectric layer over the semiconductor fin, the conductive layer comprising titanium, nitrogen and oxygen. A P-type metal gate layer is over the conductive layer over the semiconductor fin.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 11, 2021
    Inventors: Jeffrey S. LEIB, Jenny HU, Anindya DASGUPTA, Michael L. HATTENDORF, Christopher P. AUTH