Patents by Inventor Michael L. Hudziak

Michael L. Hudziak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806154
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: November 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael L Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20220088393
    Abstract: A medical device is configured to produce a cardiac motion signal by sampling a signal produced by an axis of a motion sensor, starting a blanking period, suspending the sampling of the signal during at least a portion of the blanking period, and restarting the sampling of the signal at the sampling frequency before the blanking period has expired. The medical device may detect a cardiac event from the cardiac motion signal and generate a pacing pulse in response to detecting the cardiac event in some examples.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Inventors: Todd J. SHELDON, Vincent P. GANION, Greggory R. HERR, Michael L. HUDZIAK, Juliana E. PRONOVICI, Paul R. SOLHEIM
  • Publication number: 20220071545
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Patent number: 11207526
    Abstract: A medical device is configured to produce a cardiac motion signal by sampling a signal produced by an axis of a motion sensor, starting a blanking period, suspending the sampling of the signal during at least a portion of the blanking period, and restarting the sampling of the signal at the sampling frequency before the blanking period has expired. The medical device may detect a cardiac event from the cardiac motion signal and generate a pacing pulse in response to detecting the cardiac event in some examples.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Vincent P. Ganion, Greggory R. Herr, Michael L. Hudziak, Juliana E. Pronovici, Paul R. Solheim
  • Patent number: 11172863
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: November 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20210267528
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20210077022
    Abstract: A medical system is configured to deliver an implantable medical device to a targeted implant site. The system may include a processor configured to receive a cardiac electrical signal and determine a feature of the cardiac electrical signal. The processor may be configured to determine a position of the delivery tool based on at least one feature of the cardiac electrical signal. The processor may detect a deployment position of the delivery tool in response to the cardiac electrical signal feature meeting criteria for detecting the deployment position.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 18, 2021
    Inventors: Yanina GRINBERG, Ronald A. DRAKE, Vincent P. Ganion, Kathryn HILPISCH, Michael L. HUDZIAK, Michael KEMMERER, Alexander R. MATTSON, Pamela K. OMDAHL, Anthony W. SCHROCK, Kristina YATES
  • Patent number: 10874862
    Abstract: Examples are described for configuring cardiac pacing circuitry of an implantable medical device. Circuitry that is configurable to control delivery of therapy or sense signals in accordance with a plurality of vectors may determine that one or more pins, for therapy delivery or sensing in accordance with a first subset of vectors of the plurality of vectors, are in an electrically floating state. Circuitry may selectively close one or more switches to couple at least a subset of the one or more pins to one or more set voltage levels, and deliver therapy in accordance with a vector of a second subset of vectors of the plurality of vectors, wherein the second subset of vectors is different than the first subset of vectors.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 29, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Anthony W. Schrock, Michael L. Hudziak, James J. St. Martin
  • Publication number: 20200383597
    Abstract: Techniques for determining whether a ventricular depolarization is a premature ventricular contraction (PVC) depolarization may include processing circuitry of a medical system identifying an interval from a maximum slope point to a minimum slope point for each of a plurality of ventricular depolarizations and, for each of the plurality of ventricular depolarizations as a current ventricular depolarization, determining that the intervals from the maximum slope point to the minimum slope point for the current ventricular depolarization, a preceding adjacent ventricular depolarization of the plurality of ventricular depolarizations, and a subsequent adjacent ventricular depolarization of the plurality of ventricular depolarizations satisfy one or more slope criteria. The processing circuitry determines that the current ventricular depolarization is a PVC depolarization based on the intervals from the maximum slope point to the minimum slope point satisfying the one or more slope criteria.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Gautham Rajagopal, Michael L. Hudziak, Shantanu Sarkar, Gary Toering, Jerry D. Reiland, Yuying Chao, Stephanie Chen
  • Patent number: 10780261
    Abstract: In an example, an implantable medical device (IMD) includes a hold capacitor configured to deliver an electrical therapy pulse, and charge pump circuitry configured to transfer energy from the battery to the hold capacitor. In this example, the charge pump circuitry comprises a plurality of capacitors, and switching circuitry configured to put the charge pump circuitry into a K-factor mode selected from a group of K-factor modes by opening and closing a combination of switches connected to the plurality of capacitors.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 22, 2020
    Inventors: Anthony W. Schrock, James W. Busacker, Kevin E. Baumgart, Michael L. Hudziak, James D. Reinke, John D. Wahlstrand
  • Publication number: 20200147396
    Abstract: A medical device is configured to produce a cardiac motion signal by sampling a signal produced by an axis of a motion sensor, starting a blanking period, suspending the sampling of the signal during at least a portion of the blanking period, and restarting the sampling of the signal at the sampling frequency before the blanking period has expired. The medical device may detect a cardiac event from the cardiac motion signal and generate a pacing pulse in response to detecting the cardiac event in some examples.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Todd J. SHELDON, Vincent P. GANION, Greggory R. HERR, Michael L. HUDZIAK, Juliana E. PRONOVICI, Paul R. SOLHEIM
  • Publication number: 20180250505
    Abstract: In an example, an implantable medical device (IMD) includes a hold capacitor configured to deliver an electrical therapy pulse, and charge pump circuitry configured to transfer energy from the battery to the hold capacitor. In this example, the charge pump circuitry comprises a plurality of capacitors, and switching circuitry configured to put the charge pump circuitry into a K-factor mode selected from a group of K-factor modes by opening and closing a combination of switches connected to the plurality of capacitors.
    Type: Application
    Filed: February 21, 2018
    Publication date: September 6, 2018
    Inventors: Anthony W. SCHROCK, James W. BUSACKER, Kevin E. BAUMGART, Michael L. HUDZIAK, James D. REINKE, John D. WAHLSTRAND
  • Publication number: 20180250515
    Abstract: Examples are described for configuring cardiac pacing circuitry of an implantable medical device. Circuitry that is configurable to control delivery of therapy or sense signals in accordance with a plurality of vectors may determine that one or more pins, for therapy delivery or sensing in accordance with a first subset of vectors of the plurality of vectors, are in an electrically floating state. Circuitry may selectively close one or more switches to couple at least a subset of the one or more pins to one or more set voltage levels, and deliver therapy in accordance with a vector of a second subset of vectors of the plurality of vectors, wherein the second subset of vectors is different than the first subset of vectors.
    Type: Application
    Filed: February 21, 2018
    Publication date: September 6, 2018
    Inventors: Anthony W. SCHROCK, Michael L. HUDZIAK, James J. ST. MARTIN
  • Publication number: 20160339248
    Abstract: An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses.
    Type: Application
    Filed: April 21, 2016
    Publication date: November 24, 2016
    Inventors: Anthony W. Schrock, Jean E. Hudson, Karen J. Kleckner, John D. Wahlstrand, Michael W. Heinks, Michael L. Hudziak, Subham Ghosh, Aleksandre T. Sambelashvili