Patents by Inventor Michael L. Sangwin

Michael L. Sangwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9371799
    Abstract: Thrust-reverser assemblies that utilize active flow-control and systems and methods including the same are disclosed herein. The thrust-reverser assemblies define a forward-thrust configuration and a reverse-thrust configuration. The thrust-reverser assemblies include a bullnose fairing that defines a portion of a reverser duct and an active flow-control device. The active flow-control device is located to energize a boundary layer fluid flow within a boundary layer that is adjacent to the bullnose fairing to resist separation of the boundary layer from the bullnose fairing when the thrust-reverser assembly is in the reverse-thrust configuration. The methods include flowing a thrust-reverser fluid stream through the reverser duct to generate the boundary layer and energizing a boundary layer fluid flow within the boundary layer with an active flow-control device to resist separation of the boundary layer from the bullnose fairing.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: June 21, 2016
    Assignee: The Boeing Company
    Inventors: Nathan Owen Packard, Daniel Paul Brzozowski, Zachariah B. Vandemark, Hin-Fan M. Lau, Michael L. Sangwin, Frederick W. Roos
  • Publication number: 20150308377
    Abstract: Thrust-reverser assemblies that utilize active flow-control and systems and methods including the same are disclosed herein. The thrust-reverser assemblies define a forward-thrust configuration and a reverse-thrust configuration. The thrust-reverser assemblies include a bullnose fairing that defines a portion of a reverser duct and an active flow-control device. The active flow-control device is located to energize a boundary layer fluid flow within a boundary layer that is adjacent to the bullnose fairing to resist separation of the boundary layer from the bullnose fairing when the thrust-reverser assembly is in the reverse-thrust configuration. The methods include flowing a thrust-reverser fluid stream through the reverser duct to generate the boundary layer and energizing a boundary layer fluid flow within the boundary layer with an active flow-control device to resist separation of the boundary layer from the bullnose fairing.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: The Boeing Company
    Inventors: Nathan Owen Packard, Daniel Paul Brzozowski, Zachariah B. Vandemark, Hin-Fan M. Lau, Michael L. Sangwin, Frederick W. Roos
  • Patent number: 9021813
    Abstract: An apparatus installed on an aircraft, comprising: a sleeve or duct having a trailing lip area; a plurality of petals arranged side by side with gaps therebetween, one end of each petal being attached or pivotably coupled to the lip area; and a plurality of elastomeric seals configured and disposed to close the gaps between adjacent petals. Each elastomeric seal comprises a first portion that moves with a portion of a first petal that is in contact therewith, a second portion that moves with a portion of a second petal that is in contact there, and a third portion which is stretched as the first and second petals move further apart from each other. Petal deflection is actuated by a system comprising a flexible member, a motor, a shaft driven by the motor, and an arm projecting from the shaft. One end of the flexible member is attached to the arm, the flexible member being movable to deflect the petals inward in response to a shaft rotation.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: May 5, 2015
    Assignee: The Boeing Company
    Inventors: Christopher Jasklowski, Michael L. Sangwin, David William Foutch, Mehmet Bahadir Alkislar, Matthew Anthony Dilligan
  • Publication number: 20130020408
    Abstract: An apparatus installed on an aircraft, comprising: a sleeve or duct having a trailing lip area; a plurality of petals arranged side by side with gaps therebetween, one end of each petal being attached or pivotably coupled to the lip area; and a plurality of elastomeric seals configured and disposed to close the gaps between adjacent petals. Each elastomeric seal comprises a first portion that moves with a portion of a first petal that is in contact therewith, a second portion that moves with a portion of a second petal that is in contact there, and a third portion which is stretched as the first and second petals move further apart from each other. Petal deflection is actuated by a system comprising a flexible member, a motor, a shaft driven by the motor, and an arm projecting from the shaft. One end of the flexible member is attached to the arm, the flexible member being movable to deflect the petals inward in response to a shaft rotation.
    Type: Application
    Filed: September 6, 2011
    Publication date: January 24, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Christopher Jasklowski, Michael L. Sangwin, David William Foutch, Mehmet Bahadir Alkislar, Matthew Anthony Dilligan
  • Patent number: 7690190
    Abstract: Aircraft systems including cascade thrust reversers are disclosed herein. An aircraft system in accordance with one embodiment includes a cascade thrust reverser having a fixed reverser ramp and a nozzle outer wall section at least partially aft of the fixed reverser ramp. The nozzle outer wall section is movable between a deployed position and a stowed position. The nozzle outer wall section includes a forward portion with a leading edge section. The fixed reverser ramp has a portion forward of and adjacent to the nozzle outer wall section when the nozzle outer wall section is in the stowed position. The portion of the fixed reverser ramp has a first slope. The forward portion of the nozzle outer wall section that is aft of the leading edge section has a second slope different than the first slope.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: April 6, 2010
    Assignee: The Boeing Company
    Inventors: Russel L. Thornock, Michael L. Sangwin, Entsung Hsiao
  • Patent number: 6983912
    Abstract: The present invention is a hybrid engine exhaust heat shield assembly that includes a plurality of sections. The plurality of sections include one or more sections formed of titanium (or other high heat resistant material) by a casting process, and one or more sections formed of another heat resistant material produced in a manner other than a casting process. The plurality of sections are aerodynamically shaped for thermal protection of the aft pylon. The other heat resistant material is titanium (or other high heat resistant material) that is formed by a hot formed process, or by a super plastically-formed process. The one or more sections formed by the casting process includes heat (plume) deflector flanges.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: January 10, 2006
    Assignee: The Boeing Company
    Inventors: Thomas J. Connelly, Michael L. Sangwin, Michael W. Su
  • Publication number: 20030201366
    Abstract: The present invention is a hybrid engine exhaust heat shield assembly that includes a plurality of sections. The plurality of sections include one or more sections formed of titanium (or other high heat resistant material) by a casting process, and one or more sections formed of another heat resistant material produced in a manner other than a casting process. The plurality of sections are aerodynamically shaped for thermal protection of the aft pylon. The other heat resistant material is titanium (or other high heat resistant material) that is formed by a hot formed process, or by a super plastically-formed process. The one or more sections formed by the casting process includes heat (plume) deflector flanges.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Thomas J. Connelly, Michael L. Sangwin, Michael W. Su
  • Patent number: 6634595
    Abstract: Methods and apparatus for controlling aircraft inlet air flow. The apparatus can include an external flow surface having a forward portion, and an engine inlet positioned at least proximate to the external flow surface and aft of the forward portion. The engine inlet can have an aperture and can be coupled with an engine inlet duct to an engine location. An auxiliary flow duct can be positioned at least proximate to the external flow surface and can include a first opening and a second opening spaced apart from the first opening. The first opening can be positioned to receive flow from the external flow surface during at least a first portion of an operating schedule of the propulsion system. The auxiliary flow duct can be configured to direct air to the engine location during at least a second portion of the operating schedule of the propulsion system.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: October 21, 2003
    Assignee: The Boeing Company
    Inventors: Joseph L. Koncsek, Steven L. McMahon, Myron L. Bultman, Michael L. Sangwin
  • Publication number: 20030132342
    Abstract: Methods and apparatus for controlling aircraft inlet air flow. The apparatus can include an external flow surface having a forward portion, and an engine inlet positioned at least proximate to the external flow surface and aft of the forward portion. The engine inlet can have an aperture and can be coupled with an engine inlet duct to an engine location. An auxiliary flow duct can be positioned at least proximate to the external flow surface and can include a first opening and a second opening spaced apart from the first opening. The first opening can be positioned to receive flow from the external flow surface during at least a first portion of an operating schedule of the propulsion system. The auxiliary flow duct can be configured to direct air to the engine location during at least a second portion of the operating schedule of the propulsion system.
    Type: Application
    Filed: January 11, 2002
    Publication date: July 17, 2003
    Inventors: Joseph L. Koncsek, Steven L. McMahon, Myron L. Bultman, Michael L. Sangwin
  • Patent number: 6050527
    Abstract: A flow control device and method for eliminating flow-induced cavity resonance within a closed or nearly closed end flow passage (20) having an inlet opening (30) defined between an upstream inlet edge (32) and a downstream inlet edge (34). The passage accepts exterior fluid flow (38) therein via the opening (30). The flow control device includes a stationary inlet guide vane (44) having a leading edge (46), a trailing edge (48), and a number of support members (50) to connect the vane to the inlet. The vane (44) is positioned such that the vane leading edge intercepts the exterior fluid flow shear layer, and the vane trailing edge extends into the passage at the inlet. In a preferred embodiment, the inlet guide vane is located approximately midway between the upstream and downstream inlet edges. The inlet guide vane is cross-sectionally shaped as a cambered airfoil.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: April 18, 2000
    Assignee: The Boeing Company
    Inventors: Leonard J. Hebert, Wendell R. Miller, Eric H. Nesbitt, Jerry Piro, Michael L. Sangwin
  • Patent number: 5915403
    Abstract: In a scarfed nacelle inlet for channeling airflow to an engine having a longitudinal center line axis (ENGINE C/L), the duct including a crown (26) and a keel (28), an improvement including an inlet with a biplanar forward hilite. When viewed in side elevation, the biplanar hilite includes a first portion (40) including the keel, a second portion (42) including the crown, and a transition region (44) between the first and second portions. The first and second portions (40), (42) are linear and the transition region (44) is a single arc. An imaginary intersection line (IP) between the first and second portions is located vertically about midway between the crown and the keel.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: June 29, 1999
    Assignee: The Boeing Company
    Inventors: James M. McConachie, Margaret M. Curtin, Robert P. Dougherty, Michael L. Sangwin
  • Patent number: 5906097
    Abstract: A fencing assembly (66) for prohibiting circulation of primary and/or fan airflows (52), (54) into a bounded low pressure region of a jet engine installation. The fencing assembly includes one or more flow control fences. In an exemplary application, the fencing assembly includes a number of fences positioned around the sides of a batcave (48) bounded low pressure region that is located between a primary exhaust nozzle (20) and strut fairings (30). The fencing assembly includes five fences, each fence being connected to either the primary exhaust nozzle or the strut fairings. The five fences include single fences (70), (72) positioned along each lateral side of the batcave; two rear fences (74), (74') positioned circumferentially about rear regions of the batcave; and an arcuate fence (76) positioned near the two rear fences to form a half circle. The fences include a foot portion (78) and an upright portion (80).
    Type: Grant
    Filed: March 29, 1997
    Date of Patent: May 25, 1999
    Assignee: The Boeing Company
    Inventors: Leonard J. Hebert, Jerry Piro, Michael W. Su, Ronald L. Balzer, Michael L. Sangwin, Jeff P. Lewis, Robert E. Moody
  • Patent number: 5623820
    Abstract: An improved pressure relief system for a turbine engine (10). The pressure relief system includes a pressure relief door (12) attached to the engine shroud (16) at its forward edge. The aft edge of the door (12) is free to pivot outward in the occurrence of a bleed duct failure. The door (12) is mounted within a cutout (26) in the engine shroud (16). The cutout (26) is sized so that the width of the forward edge of the cutout is greater than the width of the aft edge of the cutout. Opposing walls (42) on either side of the door (12) extend from the forward edge of the door at least partially to the aft edge of the door. The walls (42) extend inward approximately normal to the surface of the door (12). The walls (42) prevent hot engine gases (36) from flowing out of the sides of the cutout. Preventing hot engine gases (36) from flowing out the sides of the cutout helps to alter the air flow around the door (12) to obtain greater mixing of cool bypass air with the hot engine gases.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: April 29, 1997
    Assignee: The Boeing Company
    Inventors: Ronald L. Balzer, Daniel T. Jensen, Michael L. Sangwin