Patents by Inventor Michael Lamport Commons
Michael Lamport Commons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11514305Abstract: A neural network method, comprising: modeling an environment; implementing a policy based on the modeled environment, to perform an action by an agent within the environment, having at least one estimated dynamic parameter; receiving an observation and a temporally-associated cost or reward based on operation of the agent in the environment controlled according to the policy; and updating the policy, dependent on the received observation and the temporally-associated cost or reward, to improve the policy to optimize an expected future cumulative cost or reward. The policy may represent a set of parameters defining an artificial neural network having a plurality of hierarchical layers and having at least one layer which receives inputs representing aspects of the received observation indirectly from other neurons, and produce outputs to other neurons which indirectly implement the policy, the plurality of hierarchical layers being trained according to respectfully distinct training criteria.Type: GrantFiled: January 19, 2018Date of Patent: November 29, 2022Inventor: Michael Lamport Commons
-
Patent number: 10510000Abstract: A system and method of detecting an aberrant message is provided. An ordered set of words within the message is detected. The set of words found within the message is linked to a corresponding set of expected words, the set of expected words having semantic attributes. A set of grammatical structures represented in the message is detected, based on the ordered set of words and the semantic attributes of the corresponding set of expected words. A cognitive noise vector comprising a quantitative measure of a deviation between grammatical structures represented in the message and an expected measure of grammatical structures for a message of the type is then determined. The cognitive noise vector may be processed by higher levels of the neural network and/or an external processor.Type: GrantFiled: June 8, 2015Date of Patent: December 17, 2019Inventor: Michael Lamport Commons
-
Patent number: 10417563Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: April 7, 2017Date of Patent: September 17, 2019Inventors: Michael Lamport Commons, Mitzi Sturgeon White
-
Patent number: 9875440Abstract: A method of processing information is provided. The method involves receiving a message; processing the message with a trained artificial neural network based processor, having at least one set of outputs which represent information in a non-arbitrary organization of actions based on an architecture of the artificial neural network based processor and the training; representing as a noise vector at least one data pattern in the message which is incompletely represented in the non-arbitrary organization of actions; analyzing the noise vector distinctly from the trained artificial neural network; searching at least one database; and generating an output in dependence on said analyzing and said searching.Type: GrantFiled: April 20, 2015Date of Patent: January 23, 2018Inventor: Michael Lamport Commons
-
Patent number: 9619748Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: September 3, 2015Date of Patent: April 11, 2017Inventors: Michael Lamport Commons, Mitzi Sturgeon White
-
Patent number: 9129218Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: July 18, 2014Date of Patent: September 8, 2015Inventors: Michael Lamport Commons, Mitzi Sturgeon White
-
Patent number: 9053431Abstract: A system and method of detecting an aberrant message is provided. An ordered set of words within the message is detected. The set of words found within the message is linked to a corresponding set of expected words, the set of expected words having semantic attributes. A set of grammatical structures represented in the message is detected, based on the ordered set of words and the semantic attributes of the corresponding set of expected words. A cognitive noise vector comprising a quantitative measure of a deviation between grammatical structures represented in the message and an expected measure of grammatical structures for a message of the type is then determined. The cognitive noise vector may be processed by higher levels of the neural network and/or an external processor.Type: GrantFiled: July 2, 2014Date of Patent: June 9, 2015Inventor: Michael Lamport Commons
-
Patent number: 9015093Abstract: A method of processing information is provided. The method involves receiving a message; processing the message with a trained artificial neural network based processor, having at least one set of outputs which represent information in a non-arbitrary organization of actions based on an architecture of the artificial neural network based processor and the training; representing as a noise vector at least one data pattern in the message which is incompletely represented in the non-arbitrary organization of actions; analyzing the noise vector distinctly from the trained artificial neural network; searching at least one database; and generating an output in dependence on said analyzing and said searching.Type: GrantFiled: October 25, 2011Date of Patent: April 21, 2015Inventor: Michael Lamport Commons
-
Patent number: 8788441Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: November 3, 2009Date of Patent: July 22, 2014Inventors: Michael Lamport Commons, Mitzi Sturgeon White
-
Patent number: 8775341Abstract: A system and method of detecting an aberrant message is provided. An ordered set of words within the message is detected. The set of words found within the message is linked to a corresponding set of expected words, the set of expected words having semantic attributes. A set of grammatical structures represented in the message is detected, based on the ordered set of words and the semantic attributes of the corresponding set of expected words. A cognitive noise vector comprising a quantitative measure of a deviation between grammatical structures represented in the message and an expected measure of grammatical structures for a message of the type is then determined. The cognitive noise vector may be processed by higher levels of the neural network and/or an external processor.Type: GrantFiled: October 25, 2011Date of Patent: July 8, 2014Inventor: Michael Lamport Commons
-
Patent number: 7613663Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: December 18, 2006Date of Patent: November 3, 2009Inventors: Michael Lamport Commons, Mitzi Sturgeon White
-
Patent number: 7152051Abstract: An intelligent control system based on an explicit model of cognitive development (Table 1) performs high-level functions. It comprises up to O hierarchically stacked neural networks, Nm, . . . , Nm+(O?1), where m denotes the stage/order tasks performed in the first neural network, Nm, and O denotes the highest stage/order tasks performed in the highest-level neural network. The type of processing actions performed in a network, Nm, corresponds to the complexity for stage/order m. Thus N1 performs tasks at the level corresponding to stage/order 1. N5 processes information at the level corresponding to stage/order 5. Stacked neural networks begin and end at any stage/order, but information must be processed by each stage in ascending order sequence. Stages/orders cannot be skipped. Each neural network in a stack may use different architectures, interconnections, algorithms, and training methods, depending on the stage/order of the neural network and the type of intelligent control system implemented.Type: GrantFiled: September 30, 2002Date of Patent: December 19, 2006Inventors: Michael Lamport Commons, Mitzi Sturgeon White