Patents by Inventor Michael Leder
Michael Leder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240240285Abstract: A manufacturing method that includes additively manufacturing a part from an additive manufacturing feedstock comprising a titanium alloy, the titanium alloy comprising: 5.5 to 6.5 wt % aluminum; 3.0 to 4.5 wt % vanadium; 1.0 to 2.0 wt % molybdenum; 0.3 to 1.5 wt % iron; 0.3 to 1.5 wt % chromium; 0.05 to 0.5 wt % zirconium; 0.2 to 0.3 wt % oxygen; maximum of 0.05 wt % nitrogen; maximum of 0.08 wt % carbon; maximum of 0.25 wt % silicon; and balance titanium, wherein a value of an aluminum structural equivalent [Al]eq ranges from 7.5 to 9.5 wt %, and is defined by the following equation: [ Al ] ? eq = [ Al ] + [ O ] × 10 + [ Zr ] / 6 , and wherein a value of a molybdenum structural equivalent [Mo]eq ranges from 6.0 to 8.5 wt %, and is defined by the following equation: [ Mo ] ? eq = [ Mo ] + [ V ] / 1 .5 + [ Cr ] × 1 . 2 ? 5 + [ Fe ] × 2 . 5 .Type: ApplicationFiled: January 26, 2024Publication date: July 18, 2024Applicants: The Boeing Company, VSMPO-AVISMA CorporationInventors: Natalia Mitropolskaya, Robert Briggs, Catherine Parrish, Arash Ghabchi, Matthew Crill, Michael Leder, Igor Puzakov, Alexey Zaitsev, Natalia Tarenkova
-
Patent number: 11920218Abstract: This invention generally relates to the field of nonferrous metallurgy, namely to titanium alloy materials with specified mechanical properties for manufacturing the aircraft fasteners. A stock for high strength fastener is manufactured from wrought titanium alloy containing, in weight percentages, 5.5 to 6.5 Al, 3.0 to 4.5 V, 1.0 to 2.0 Mo, 0.3 to 1.5 Fe, 0.3 to 1.5 Cr, 0.05 to 0.5 Zr, 0.15 to 0.3 O, 0.05 max. N, 0.08 max. C, 0.25 max. Si, balance titanium and inevitable impurities, having the value of aluminum structural equivalent [Al] eq in the range of 7.5 to 9.5, and the value of molybdenum structural equivalent [Mo] eq in the range of 6.0 to 8.5, where the equivalents are defined by the following equations: [Al] eq=[Al]+[O]×10+[Zr]/6; [Mo] eq=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5.Type: GrantFiled: August 31, 2018Date of Patent: March 5, 2024Assignees: The Boeing Company, VSMPO-AVISMA CorporationInventors: Natalia G. Mitropolskaya, Robert D. Briggs, Michael Leder, Alexey Zaitsev, Igor Puzakov, Natalia Tarenkova
-
Patent number: 11920217Abstract: A titanium alloy for additive manufacturing that includes 5.5 to 6.5 wt % aluminum (Al); 3.0 to 4.5 wt % vanadium (V); 1.0 to 2.0 wt % molybdenum (Mo); 0.3 to 1.5 wt % iron (Fe); 0.3 to 1.5 wt % chromium (Cr); 0.05 to 0.5 wt % zirconium (Zr); 0.2 to 0.3 wt % oxygen (O); maximum of 0.05 wt % nitrogen (N); maximum of 0.08 wt % carbon (C); maximum of 0.25 wt % silicon (Si); and balance titanium, wherein a value of an aluminum structural equivalent [Al]eq ranges from 7.5 to 9.5 wt %, and is defined by the following equation: [Al]eq=[Al]+[O]×10+[Zr]/6, and wherein a value of a molybdenum structural equivalent [Mo]eq ranges from 6.0 to 8.5 wt %, and is defined by the following equation: [Mo]eq=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5.Type: GrantFiled: August 31, 2018Date of Patent: March 5, 2024Assignees: The Boeing Company, VSMPO-AVISMA CorporationInventors: Natalia Mitropolskaya, Robert Briggs, Catherine Parrish, Arash Ghabchi, Matthew Crill, Michael Leder, Igor Puzakov, Alexey Zaitsev, Natalia Tarenkova
-
Publication number: 20210310104Abstract: This invention generally relates to the field of nonferrous metallurgy, namely to titanium alloy materials with specified mechanical properties for manufacturing the aircraft fasteners. A stock for high strength fastener is manufactured from wrought titanium alloy containing, in weight percentages, 5.5 to 6.5 Al, 3.0 to 4.5 V, 1.0 to 2.0 Mo, 0.3 to 1.5 Fe, 0.3 to 1.5 Cr, 0.05 to 0.5 Zr, 0.15 to 0.3 O, 0.05 max. N, 0.08 max. C, 0.25 max. Si, balance titanium and inevitable impurities, having the value of aluminum structural equivalent [Al]eq in the range of 7.5 to 9.5, and the value of molybdenum structural equivalent [Mo]eq in the range of 6.0 to 8.5, where the equivalents are defined by the following equations: [Al]eq=[Al]+[O]×10+[Zr]/6; [Mo]eq=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5.Type: ApplicationFiled: August 31, 2018Publication date: October 7, 2021Applicants: The Boeing Company, VSMPO-AVISMA CorporationInventors: Natalia G. Mitropolskaya, Robert D. Briggs, Michael Leder, Alexey Zaitsev, Igor Puzakov, Natalia Tarenkova
-
Publication number: 20210164074Abstract: A titanium alloy for additive manufacturing that includes 5.5 to 6.5 wt % aluminum (Al); 3.0 to 4.5 wt % vanadium (V); 1.0 to 2.0 wt % molybdenum (Mo); 0.3 to 1.5 wt % iron (Fe); 0.3 to 1.5 wt % chromium (Cr); 0.05 to 0.5 wt % zirconium (Zr); 0.2 to 0.3 wt % oxygen (O); maximum of 0.05 wt % nitrogen (N); maximum of 0.08 wt % carbon (C); maximum of 0.25 wt % silicon (Si); and balance titanium, wherein a value of an aluminum structural equivalent [Al]eq ranges from 7.5 to 9.5 wt %, and is defined by the following equation: [Al]eq=[Al]+[O]×10+[Zr]/6, and wherein a value of a molybdenum structural equivalent [Mo]eq ranges from 6.0 to 8.5 wt %, and is defined by the following equation: [Mo]eq=[Mo]+[V]/1.5 +[Cr]×1.25+[Fe]×2.5.Type: ApplicationFiled: August 31, 2018Publication date: June 3, 2021Applicants: The Boeing Company, VSMPO-AVISMA CorporationInventors: Natalia Mitropolskaya, Robert Briggs, Catherine Parrish, Arash Ghabchi, Matthew Crill, Michael Leder, Igor Puzakov, Alexey Zaitsev, Natalia Tarenkova
-
Publication number: 20200149133Abstract: Herein disclosed includes the manufacture of sheets from a titanium alloy having a chemical composition efficiently balanced with manufacturability based on known conventional manufacturing techniques for finished products exhibiting low temperature superplastic forming properties. The result is achieved by a sheet material for low temperature superplastic made of titanium alloy with the following content of element by % wt.: 4.5-5.5Al, 4.5-5.5V, 0.1-1.0Mo, 0.8-1.5Fe, 0.1-0.5Cr, 0.1-0.5Ni, 0.16-0.25O, remainder is titanium and residual elements and having molybdenum structural equivalent [Mo]eqiv.>5 and aluminum structural equivalent [Al]equiv.<8; the equivalent values are calculated from the expressions: [Mo]eqiv.=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5+[Ni]/0.8 [Al]eqiv.=[Al]+[O]×10+[Zr]/6.Type: ApplicationFiled: April 25, 2017Publication date: May 14, 2020Applicants: The Boeing Company, Public Stock Company VSMPO-AVISMA CorporationInventors: Michael Leder, Igor Puzakov, Natalia Tarenkova, Alexander Berestov, Natalia G. Mitropolskaya, Robert D. Briggs
-
Patent number: 4192797Abstract: There is described an improved process for the discontinuous suspension polymerization of alkenyl-aromatic compounds, which comprises re-using the aqueous polymerization medium, after separation of the polymer beads, as the polymerization medium of a subsequent polymerization. Monomer-soluble and water-soluble initiators and, optionally fresh water and dispersing agent, are added. Re-using the aqueous polymerization medium does not negatively affect the color and mechanical properties of the polymer obtained. The process of the invention results in considerable saving of energy.Type: GrantFiled: June 23, 1977Date of Patent: March 11, 1980Assignee: Hoechst AktiengesellschaftInventors: Michael Lederer, Antonius J. M. Bouman
-
Patent number: 4088712Abstract: There is disclosed an improved bulk-suspension process for polymerizing vinyl aromatic monomers in the presence of an ethylene-propylene-nonconjugated diene-rubber, which comprises using, in the suspension polymerization step, peroxy-carbonic esters as the polymerization initiator. The process of the invention yields products having improved notched impact strength, weatherability and elongation at break combined with a good shear stability.Type: GrantFiled: August 12, 1976Date of Patent: May 9, 1978Assignee: Hoechst AktiengesellschaftInventors: Michael Lederer, Wolfgang Strobel
-
Patent number: 3985824Abstract: The invention relates to novel impact resistant graft copolymers of a vinyl aromatic on an ethylene/propylene/tercomponent rubber especially characterized by an improved notched impact strength and resistance to atmospheric corrosion, and a process for their preparation. Said copolymers are obtained by a two-step mass/suspension polymerization process characterized by the presence of oxygen, preferably by the presence of air, at a pressure of from 0.05 to 10 atmospheres gauge during the course of the mass polymerization step.Type: GrantFiled: March 5, 1975Date of Patent: October 12, 1976Assignee: Hoechst AktiengesellschaftInventors: Michael Lederer, Wolfgang Strobel, Horst Jastrow