Patents by Inventor Michael Lee O'Connor

Michael Lee O'Connor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10088312
    Abstract: A method and system are disclosed for providing an estimate of a location of a user receiver device. The method involves emitting, from at least one vehicle, at least one spot beam on Earth; and receiving, with the user receiver device, at least one spot beam. The method further involves calculating, with the user receiver device, the estimate of the location of the user receiver device according to the user receiver device's location within at least one spot beam. Each spot beam contains at least one acquisition signal, which may comprise at least one ring channel. Each ring channel comprises a frame count; a space vehicle identification (SVID); a spot beam identification (ID); and/or X, Y, Z coordinates of the vehicle emitting the spot beam relative to an Earth coordinate system. In one or more embodiments, at least one vehicle may be a satellite and/or a pseudolite.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 2, 2018
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, David G. Lawrence, David A. Whelan, Michael Lee O'Connor
  • Patent number: 9201131
    Abstract: A system, method, and apparatus for secure routing based on a degree of trust are disclosed herein. The disclosed method involves assigning a level of trust to at least one network node, and utilizing the level of trust to determine a degree of security of the network node(s). The level of trust of the network node(s) is related to an amount of certainty of the physical location of the network node(s). The amount of certainty is attained from the network node(s) being located in a known secure location, and/or from verification of the physical location of the network node(s) by using satellite geolocation techniques or by using network ping ranging measurements. The method further involves utilizing the level of trust of the network node(s) to determine a degree of trust of at least one path for routing the data, where the path(s) includes at least one of the network nodes.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 1, 2015
    Assignee: THE BOEING COMPANY
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael Lee O'Connor, Arun Ayyagari
  • Patent number: 9178894
    Abstract: A system, method, and apparatus for secure routing based on the physical location of routers are disclosed herein. The disclosed method for secure data transmission of at least one data packet through a plurality of network nodes involves defining a source network node, a destination network node, and at least one security constraint, which is based on the physical location of at least one of the network nodes. The method further involves comparing available network nodes with the security constraint(s) to determine which of the available network nodes meet the security constraint(s) and, thus, are qualified network nodes. Additionally, the method involves determining a route comprising at least one of the qualified network nodes to route the data packet(s) through from the source network node to the destination network node. Further, the method involves transmitting the data packet(s) through the route of the qualified network node(s).
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 3, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Michael Lee O'Connor, Rachel Rané Schmalzried, David G. Lawrence, David A. Whelan, Gregory M. Gutt
  • Patent number: 8949941
    Abstract: A system, method, and apparatus for the authentication of the physical location of a target node are disclosed herein. In one or more embodiments, the authentication of the target node's physical location is achieved by using ping ranging measurements obtained from the amount of time that elapses during ping messages being sent between the target node and at least one trusted node with a known physical location. The physical location of the trusted node(s) is obtained by using satellite geolocation techniques. The accuracy of the ranging measurements may be improved upon by using pre-coordination and/or priority determination of the ping messages being sent between the target node and the trusted node(s). In at least one embodiment, the ping messages are sent by dedicated ping response hardware that is associated with the target node and/or the trusted node(s). In some embodiments, the ping messages include a pseudo random code bit sequence.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael Lee O'Connor, Rachel Rane' Schmalzried
  • Patent number: 8570216
    Abstract: System, methods, and devices for a self-sustaining differential corrections network that employs roving reference devices (RRDs) as reference stations for improving positioning, navigation, and timing (PN&T) solutions for other enabled local roving and/or stationary receiving devices (RDs) are disclosed herein. The disclosed differential correction system enhancement leverages RRDs enabled for a non-global positioning system (non-GPS), secondary PN&T signal to characterize local errors. These local errors are then used by local RDs in combination with a signal to calculate an improved PN&T estimate for the RDs.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: October 29, 2013
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, Michael Lee O'Connor, David G. Lawrence
  • Publication number: 20130232565
    Abstract: A system, method, and apparatus for secure routing based on the physical location of routers are disclosed herein. The disclosed method for secure data transmission of at least one data packet through a plurality of network nodes involves defining a source network node, a destination network node, and at least one security constraint, which is based on the physical location of at least one of the network nodes. The method further involves comparing available network nodes with the security constraint(s) to determine which of the available network nodes meet the security constraint(s) and, thus, are qualified network nodes. Additionally, the method involves determining a route comprising at least one of the qualified network nodes to route the data packet(s) through from the source network node to the destination network node. Further, the method involves transmitting the data packet(s) through the route of the qualified network node(s).
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Michael Lee O'Connor, Rachel Rané Schmalzried, David G. Lawrence, David A. Whelan, Gregory M. Gutt
  • Publication number: 20130019317
    Abstract: A system, method, and apparatus for secure routing based on a degree of trust are disclosed herein. The disclosed method involves assigning a level of trust to at least one network node, and utilizing the level of trust to determine a degree of security of the network node(s). The level of trust of the network node(s) is related to an amount of certainty of the physical location of the network node(s). The amount of certainty is attained from the network node(s) being located in a known secure location, and/or from verification of the physical location of the network node(s) by using satellite geolocation techniques or by using network ping ranging measurements. The method further involves utilizing the level of trust of the network node(s) to determine a degree of trust of at least one path for routing the data, where the path(s) includes at least one of the network nodes.
    Type: Application
    Filed: February 3, 2012
    Publication date: January 17, 2013
    Applicant: THE BOEING COMPANY
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael Lee O'Connor, Arun Ayyagari
  • Publication number: 20120309416
    Abstract: A system, method, and apparatus for the authentication of the physical location of a target node are disclosed herein. In one or more embodiments, the authentication of the target node's physical location is achieved by using ping ranging measurements obtained from the amount of time that elapses during ping messages being sent between the target node and at least one trusted node with a known physical location. The physical location of the trusted node(s) is obtained by using satellite geolocation techniques. The accuracy of the ranging measurements may be improved upon by using pre-coordination and/or priority determination of the ping messages being sent between the target node and the trusted node(s). In at least one embodiment, the ping messages are sent by dedicated ping response hardware that is associated with the target node and/or the trusted node(s). In some embodiments, the ping messages include a pseudo random code bit sequence.
    Type: Application
    Filed: October 27, 2011
    Publication date: December 6, 2012
    Applicant: THE BOEING COMPANY
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael Lee O'Connor, Rachel Rane' Schmalzried
  • Publication number: 20120139782
    Abstract: System, methods, and devices for a self-sustaining differential corrections network that employs roving reference devices (RRDs) as reference stations for improving positioning, navigation, and timing (PN&T) solutions for other enabled local roving and/or stationary receiving devices (RDs) are disclosed herein. The disclosed differential correction system enhancement leverages RRDs enabled for a non-global positioning system (non-GPS), secondary PN&T signal to characterize local errors. These local errors are then used by local RDs in combination with a signal to calculate an improved PN&T estimate for the RDs.
    Type: Application
    Filed: May 23, 2011
    Publication date: June 7, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, Michael Lee O'Connor, David G. Lawrence
  • Publication number: 20080195268
    Abstract: An implement steering system includes at least one sensor for providing an indication of tilt associated with an implement as it traverses along an implement path of travel and at least another sensor for providing an indication of the current position of the implement as it traverses along the implement path of travel. A processor provides an implement drift correction signal in response to the indication of tilt and the indication of current position in order of facilitate correcting the implement path of travel so it corresponds to a desired path of travel, while an implement steering arrangement which is responsive to the drift correction signal causes the implement path of travel to be corrected so it corresponds to the desired path of travel as the implement is pulled through an open field by an implement pulling vehicle.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Applicant: Novariant, Inc.
    Inventors: Glen Alan Sapilewski, Michael Lee O'Connor, Manou Serres, Michael Lyle Eglington