Patents by Inventor Michael Lee SCHEEL

Michael Lee SCHEEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200228006
    Abstract: Devices and methods related to dual output charge pumps. According to some implementation, a charge pump includes a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance. In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node, and the buck charge pump circuit includes the input node and a divided-voltage output node. In some implementations, the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node. In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
    Type: Application
    Filed: December 21, 2019
    Publication date: July 16, 2020
    Inventor: Michael Lee SCHEEL
  • Publication number: 20200092830
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Application
    Filed: September 7, 2019
    Publication date: March 19, 2020
    Inventors: Wendy NG, Yin Chun YEUNG, Michael Lee SCHEEL
  • Patent number: 10523115
    Abstract: According to some implementation, a charge pump includes a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance. In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node, and the buck charge pump circuit includes the input node and a divided-voltage output node. In some implementations, the charge pump of claim 3 wherein the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node. In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: December 31, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventor: Michael Lee Scheel
  • Patent number: 10420042
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 17, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Yin Chun Yeung, Michael Lee Scheel
  • Publication number: 20190140537
    Abstract: According to some implementation, a charge pump includes a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance. In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node, and the buck charge pump circuit includes the input node and a divided-voltage output node. In some implementations, the charge pump of claim 3 wherein the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node. In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
    Type: Application
    Filed: August 13, 2018
    Publication date: May 9, 2019
    Inventor: Michael Lee SCHEEL
  • Patent number: 10050522
    Abstract: According to some implementation, a charge pump includes a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance. In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node, and the buck charge pump circuit includes the input node and a divided-voltage output node. In some implementations, the charge pump of claim 3 wherein the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node. In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: August 14, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventor: Michael Lee Scheel
  • Publication number: 20170181106
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 22, 2017
    Inventors: Wendy NG, Yin Chun YEUNG, Michael Lee SCHEEL
  • Patent number: 9584012
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 28, 2017
    Inventors: Wendy Ng, Yin Chun Yeung, Michael Lee Scheel
  • Publication number: 20160241142
    Abstract: According to some implementation, a charge pump includes a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance. In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node, and the buck charge pump circuit includes the input node and a divided-voltage output node. In some implementations, the charge pump of claim 3 wherein the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node. In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
    Type: Application
    Filed: September 22, 2015
    Publication date: August 18, 2016
    Inventor: Michael Lee SCHEEL
  • Publication number: 20160241143
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 18, 2016
    Inventors: Wendy NG, Yin Chun YEUNG, Michael Lee SCHEEL