Patents by Inventor Michael Lester Kerns

Michael Lester Kerns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6656867
    Abstract: This invention is based upon the unexpected discovery that certain catalyst systems which are comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of certain azopyridines and certain iminopyridines; and (C) methylalumoxane can be used to catalyze the polymerization of diene monomers, such as 1,3-butadiene and isoprene, into polymers, such as high cis-1,4-polybutadiene rubber. Some representative examples of azopyridines that can be utilized in the catalyst systems of this invention include 2-phenylazopyridine, 4-methyl-2-phenylazopyridine, and 2,6-diphenylazopyridine. The subject invention more specifically discloses a process for synthesizing a polybutadiene rubber which comprises polymerizing 1,3-butadiene at a temperature which is within the range of about 10° C. to about 100° C.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: December 2, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Michael Lester Kerns, Daniel Edward Bowen, III, Stephan Rodewald
  • Publication number: 20030141268
    Abstract: The production of a protein free synthetic polyisoprene which has both low levels of chemical impurities and good physical properties has yet to be realized. It has now been envisioned that the use of neodymium catalyzed polyisoprene will offer the combined advantages of both a clean, as well as, high cis-1,4 polymer. Synthesis of polyisoprene rubber using a neodymium based catalyst system is described. Characterization of the material shows the absence of an ultra high molecular weight fraction and the presence of very high cis-1,4-microstructure. Gum stock and black filled compound studies comparing neodymium polyisoprene with natural rubber, titanium polyisoprene, and lithium polyisoprene have been performed. Results indicate that polyisoprene rubber synthesized using a neodymium catalyst. system (Nd—PI) has similar stress-strain and tear properties as synthetic titanium polyisoprene.
    Type: Application
    Filed: October 18, 2002
    Publication date: July 31, 2003
    Inventors: Michael Lester Kerns, Michael Joseph Rachita
  • Publication number: 20030119662
    Abstract: This invention is based upon the unexpected discovery that certain catalyst systems which are comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of certain azopyridines and certain iminopyridines; and (C) methylalumoxane can be used to catalyze the polymerization of diene monomers, such as 1,3-butadiene and isoprene, into polymers, such as high cis-1,4-polybutadiene rubber. Some representative examples of azopyridines that can be utilized in the catalyst systems of this invention include 2-phenylazopyridine, 4-methyl-2-phenylazopyridine, and 2,6-diphenylazopyridine. The subject invention more specifically discloses a process for synthesizing a polybutadiene rubber which comprises polymerizing 1,3-butadiene at a temperature which is within the range of about 10° C. to about 100° C.
    Type: Application
    Filed: November 11, 2002
    Publication date: June 26, 2003
    Applicant: The Goodyear Tire & Rubber Company
    Inventors: Michael Lester Kerns, Daniel Edward Bowen, Stephan Rodewald
  • Patent number: 6566478
    Abstract: This invention is based upon the discovery that rubbery polymers having a high vinyl content and a low degree of branching can be synthesized with an initiator system that is comprised of (a) a lithium initiator selected from the group consisting of allylic lithium compounds and benzylic lithium compounds, (b) a Group I metal alkoxide, and (c) a polar modifier; wherein the molar ratio of the Group I metal alkoxide to the polar modifier is within the range of about 0.1:1 to about 10:1; and wherein the molar ratio of the Group I metal alkoxide to the lithium initiator is within the range of about 0.01:1 to about 20:1. These high vinyl polymers offer reduced levels of hysteresis and better functionalization efficiency.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: May 20, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Steven Kristofer Henning, Michael Lester Kerns, Zhengfang Xu
  • Patent number: 6515087
    Abstract: It is important for rubbery polymers that are used in tires, hoses, power transmission belts and other industrial products to have good compatibility with fillers, such as carbon black, silica, clay (including organoclays), and mixtures thereof. To attain improved interaction with fillers such rubbery polymers can be functionalized with various compounds, such as amines. The present invention discloses a process for synthesizing a rubbery polymer that is functionalized to attain improved compatibility with fillers.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 4, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa, Scott McDowell Christian, Michael Lester Kerns
  • Publication number: 20030013556
    Abstract: This invention is based upon the unexpected discovery that cis-1,4-polybutadiene that is synthesized utilizing organometallic catalyst systems has superior characteristics for utilization in solid golf ball cores if the polymerization is terminated utilizing a carboxylic acid of the structural formula RCOOH, wherein R represents an alkyl group containing from 1 to about 30 carbon atoms. This invention more specifically relates to a golf ball which is comprised of a solid core and a resin cover, wherein the solid core is comprised of cis-1,4-polybutadiene rubber which is made by polymerizing 1,3-butadiene in the presence of an organometallic catalyst system wherein the polymerization is short-stopped with a carboxylic acid of the structural formula RCOOH, wherein R represents an alkyl group containing from 1 to about 30 carbon atoms.
    Type: Application
    Filed: June 17, 2002
    Publication date: January 16, 2003
    Inventors: Craig William Burkhart, Michael Lester Kerns, Kenneth Floyd Castner, Michael Joseph Rachita, Michael Paul Mallamaci
  • Patent number: 6479601
    Abstract: This invention is based upon the unexpected discovery that certain catalyst systems which are comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of certain azopyridines and certain iminopyridines; and (C) methylalumoxane can be used to catalyze the polymerization of diene monomers, such as 1,3-butadiene and isoprene, into polymers, such as high cis-1,4-polybutadiene rubber. Some representative examples of azopyridines that can be utilized in the catalyst systems of this invention include 2-phenylazopyridine, 4-methyl-2-phenylazopyridine, and 2,6-diphenylazopyridine. The subject invention more specifically discloses a process for synthesizing a polybutadiene rubber which comprises polymerizing 1,3-butadiene at a temperature which is within the range of about 10° C. to about 100° C.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: November 12, 2002
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Michael Lester Kerns, Daniel Edward Bowen, III, Stephan Rodewald
  • Publication number: 20020137849
    Abstract: This invention is based upon the unexpected discovery that cis-1,4-polybutadiene that is synthesized utilizing organometallic catalyst systems has superior characteristics for utilization in solid golf ball cores if the polymerization is terminated utilizing a fatty alcohol of the structural formula ROH, wherein R represents an alkyl group containing from 2 to about 30 carbon atoms. This invention more specifically relates to a golf ball which is comprised of a solid core and a resin cover, wherein the solid core is comprised of cis-1,4-polybutadiene rubber which is made by polymerizing 1,3-butadiene in the presence of an organometallic catalyst system wherein the polymerization is short-stopped with a fatty alcohol of the structural formula ROH, wherein R represents an alkyl group containing from 2 to about 30 carbon atoms.
    Type: Application
    Filed: March 25, 2002
    Publication date: September 26, 2002
    Inventors: Michael Lester Kerns, Kenneth Floyd Castner, Michael Joseph Rachita
  • Publication number: 20020120082
    Abstract: It is important for rubbery polymers that are used in tires, hoses, power transmission belts and other industrial products to have good compatibility with fillers, such as carbon black, silica, clay (including organoclays), and mixtures thereof. To attain improved interaction with fillers such rubbery polymers can be functionalized with various compounds, such as amines. The present invention discloses a process for synthesizing a rubbery polymer that is functionalized to attain improved compatibility with fillers.
    Type: Application
    Filed: December 6, 2001
    Publication date: August 29, 2002
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa, Scott McDowell Christian, Michael Lester Kerns
  • Patent number: 6372863
    Abstract: This invention discloses a process for synthesizing random styrene-butadiene rubber comprising: (1) continuously charging 1,3-butadiene, styrene, an initiator, and a solvent into a first polymerization zone, (2) allowing the 1,3-butadiene and styrene to copolymerize in the first polymerization zone to total conversion of 60 to 90 percent to produce a polymer cement containing living styrene-butadiene chains, (3) continuously charging the polymer cement containing living styrene-butadiene chains and additional 1,3-butadiene monomer into a second polymerization zone, wherein from 20 to 40 percent of the total amount of 1,3-butadiene changed is charged into the second polymerization zone, (4) allowing the copolymerization to continue in the second polymerization zone to a conversion of the 1,3-butadiene monomer of at least 90 percent, wherein the total conversion of styrene and 1,3-butadiene in the second polymerization zone is limited to a maximum of 95 percent, (5) withdrawing a polymer cement of random styren
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: April 16, 2002
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Michael Lester Kerns, Zhengfang Xu, Scott McDowell Christian
  • Patent number: 6313216
    Abstract: This invention discloses a process for synthesizing random styrene-isoprene rubber comprising: (1) continuously charging isoprene, styrene, an initiator, and a solvent into a first polymerization zone, (2) allowing the isoprene and styrene to copolymerize in the first polymerization zone to total conversion of 60 to 95 percent to produce a polymer cement containing living styrene-isoprene chains, (3) continuously charging the polymer cement containing living styrene-isoprene chains and additional isoprene monomer into a second polymerization zone, wherein from 5 to 40 percent of the total amount of isoprene changed is charged into the second polymerization zone, (4) allowing the copolymerization to continue in the second polymerization zone to a conversion of the isoprene monomer of at least 90 percent wherein the total conversion of styrene and isoprene in the second polymerization zone is limited to a maximum of 98 percent, (5) withdrawing a polymer cement of random styrene-isoprene rubber having living cha
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: November 6, 2001
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Scott McDowell Christian, Zhengfang Xu, Michael Lester Kerns