Patents by Inventor Michael MÄDER

Michael MÄDER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12205815
    Abstract: A gallium arsenide substrate which exhibits at least one surface having a surface oxide layer comprising gallium and arsenic oxides and which exhibits at least one surface having, according to an ellipsometric lateral substrate mapping with an optical surface analyzer, based on a substrate diameter of 150 mm as reference, a defect number of <6000 and/or a total defect area of less than 2 cm2, wherein a defect is defined as a continuous area of greater than 1000 ?m2 having a deviation from the average measurement signal in elipsometric lateral substrate mapping with an optical surface analyzer of at least ±0.05%.
    Type: Grant
    Filed: October 10, 2021
    Date of Patent: January 21, 2025
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Patent number: 11908502
    Abstract: A method for reducing noise in a read signal due attributable to read element asymmetry provides for transmitting a write signal through a write precompensation circuit that shifts rising edges and falling edges of each of pulse in the write signal by a select magnitude and in opposite directions. After the write signal is encoded on a media, a corresponding read signal is read, with a read element, from the media. The method further provides for transmitting the read signal through a magnetoresistive asymmetry compensation (MRAC) block that is tuned to correct second-order non-linearities characterized by a particular set of distortion signatures. The select magnitude of the waveform shift applied by the write precompensation circuit introduces a non-linear signal characteristic that combines with non-linear signal characteristics introduced by the read element to generate one of the particular distortion signatures that is correctable by the MRAC block.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: February 20, 2024
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Walter R. Eppler, Drew Michael Mader
  • Publication number: 20230290398
    Abstract: A method for reducing noise in a read signal due attributable to read element asymmetry provides for transmitting a write signal through a write precompensation circuit that shifts rising edges and falling edges of each of pulse in the write signal by a select magnitude and in opposite directions. After the write signal is encoded on a media, a corresponding read signal is read, with a read element, from the media. The method further provides for transmitting the read signal through a magnetoresistive asymmetry compensation (MRAC) block that is tuned to correct second-order non-linearities characterized by a particular set of distortion signatures. The select magnitude of the waveform shift applied by the write precompensation circuit introduces a non-linear signal characteristic that combines with non-linear signal characteristics introduced by the read element to generate one of the particular distortion signatures that is correctable by the MRAC block.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Walter R. EPPLER, Drew Michael MADER
  • Publication number: 20220028682
    Abstract: A gallium arsenide substrate which exhibits at least one surface having a surface oxide layer comprising gallium and arsenic oxides and which exhibits at least one surface having, according to an ellipsometric lateral substrate mapping with an optical surface analyzer, based on a substrate diameter of 150 mm as reference, a defect number of <6000 and/or a total defect area of less than 2 cm2, wherein a defect is defined as a continuous area of greater than 1000 ?m2 having a deviation from the average measurement signal in elipsometric lateral substrate mapping with an optical surface analyzer of at least ±0.05%.
    Type: Application
    Filed: October 10, 2021
    Publication date: January 27, 2022
    Inventors: Wolfram FLIEGEL, Christoph KLEMENT, Christa WILLNAUER, Max SCHEFFER-CZYGAN, André KLEINWECHTER, Stefan EICHLER, Berndt WEINERT, Michael MÄDER
  • Patent number: 11170989
    Abstract: The present invention relates to a novel provided gallium arsenide substrates as well as the use thereof. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, by way of example by means of ellipsometric lateral substrate mapping for optical contact-free quantitative characterization.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: November 9, 2021
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Patent number: 11011189
    Abstract: A read channel is configured to obtain an analog readback waveform from a magnetic recording medium of a disk drive at a sampling rate of one sample per one written bit. A buffer is coupled the read channel. Circuitry is configured to inject a plurality of different phase offsets into the read channel for each of a plurality of revolutions of the medium. The circuitry is also configured to store, in a buffer, an amplitude of the readback waveform for each of the different phase offsets. The circuitry is further configured to generate an oversampled readback waveform using the amplitudes stored in the buffer.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: May 18, 2021
    Assignee: Seagate Technology LLC
    Inventors: Drew Michael Mader, Wenzhong Zhu
  • Patent number: 10832704
    Abstract: A method includes generating, during manufacture of a heat-assisted magnetic recording (HAMR) disk drive, a temperature compensation equation for a compensation factor using initial operating currents supplied to a laser diode of the disk drive at different initial operating temperatures and an efficiency value based on the initial operating temperatures. The operating currents are representative of currents for recording data to or erasing data from a magnetic recording medium. The temperature compensation equation is stored in the disk drive. A subsequent efficiency value is determined based on at least one of the initial operating temperatures and an operating temperature differing from the initial operating temperatures. An updated compensation factor at the operating temperature is determined during field operation using the temperature compensation equation and the subsequent efficiency value. An updated operating current is calculated using the updated compensation factor and the operating temperature.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: November 10, 2020
    Assignee: Seagate Technology LLC
    Inventor: Drew Michael Mader
  • Patent number: 10770106
    Abstract: A heat-assisted recording head is moved onto a ramp such that the recording head is thermally isolated from a moving disk. A heating device is activated on the recording head to cause the recording head to obtain a high temperature that is not obtainable when proximate to the moving disk. The recording head is moved over the moving disk such that the recording head reaches an operating temperature that is below the high temperature. One or more temperatures between the high temperature and the operational temperature are determined at which a laser of the recording head experiences mode-hopping. The one or more temperatures are stored and accessed by a controller to mitigate mode hopes during an operation of the recording head.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 8, 2020
    Assignee: Seagate Technology LLC
    Inventors: Drew Michael Mader, Tim Rausch, Josh Ward Christensen
  • Publication number: 20200251132
    Abstract: A read channel is configured to obtain an analog readback waveform from a magnetic recording medium of a disk drive at a sampling rate of one sample per one written bit. A buffer is coupled the read channel. Circuitry is configured to inject a plurality of different phase offsets into the read channel for each of a plurality of revolutions of the medium. The circuitry is also configured to store, in a buffer, an amplitude of the readback waveform for each of the different phase offsets. The circuitry is further configured to generate an oversampled readback waveform using the amplitudes stored in the buffer.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Drew Michael Mader, Wenzhong Zhu
  • Patent number: 10665254
    Abstract: A read channel is configured to obtain an analog readback waveform from a magnetic recording medium of a disk drive at a sampling rate of one sample per one written bit. A buffer is coupled the read channel. Circuitry is configured to inject a plurality of different phase offsets into the read channel for each of a plurality of revolutions of the medium. The circuitry is also configured to store, in a buffer, an amplitude of the readback waveform for each of the different phase offsets. The circuitry is further configured to generate an oversampled readback waveform using the amplitudes stored in the buffer.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 26, 2020
    Assignee: Seagate Technology LLC
    Inventors: Drew Michael Mader, Wenzhong Zhu
  • Patent number: 10643651
    Abstract: Stability or instability zones are determined for ambient temperatures and one or more operational parameters applied to a heat-assisted magnetic recording head. Operations within the stability or instability zones resulting in respective stable or unstable operation of a laser of the recording head. During operation of the recording head, it is determining that a current ambient temperature and currently applied values of the one or more operational parameters are at or near one of the instability zones, and a write operation of the recording head is modified in response.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 5, 2020
    Assignee: Seagate Technology LLC
    Inventors: Christopher J. Rea, Drew Michael Mader
  • Publication number: 20200126590
    Abstract: Stability or instability zones are determined for ambient temperatures and one or more operational parameters applied to a heat-assisted magnetic recording head. Operations within the stability or instability zones resulting in respective stable or unstable operation of a laser of the recording head. During operation of the recording head, it is determining that a current ambient temperature and currently applied values of the one or more operational parameters are at or near one of the instability zones, and a write operation of the recording head is modified in response.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Inventors: Christopher J. Rea, Drew Michael Mader
  • Publication number: 20200126586
    Abstract: A method includes generating, during manufacture of a heat-assisted magnetic recording (HAMR) disk drive, a temperature compensation equation for a compensation factor using initial operating currents supplied to a laser diode of the disk drive at different initial operating temperatures and an efficiency value based on the initial operating temperatures. The operating currents are representative of currents for recording data to or erasing data from a magnetic recording medium. The temperature compensation equation is stored in the disk drive. A subsequent efficiency value is determined based on at least one of the initial operating temperatures and an operating temperature differing from the initial operating temperatures. An updated compensation factor at the operating temperature is determined during field operation using the temperature compensation equation and the subsequent efficiency value. An updated operating current is calculated using the updated compensation factor and the operating temperature.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventor: Drew Michael Mader
  • Patent number: 10515658
    Abstract: A method includes generating, during manufacture of a heat-assisted magnetic recording (HAMR) disk drive, a temperature compensation equation for a compensation factor using initial operating currents supplied to a laser diode of the disk drive at different initial operating temperatures and an efficiency value based on the initial operating temperatures. The operating currents are representative of currents for recording data to or erasing data from a magnetic recording medium. The temperature compensation equation is stored in the disk drive. A subsequent efficiency value is determined based on at least one of the initial operating temperatures and an operating temperature differing from the initial operating temperatures. An updated compensation factor at the operating temperature is determined during field operation using the temperature compensation equation and the subsequent efficiency value. An updated operating current is calculated using the updated compensation factor and the operating temperature.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: December 24, 2019
    Assignee: Seagate Technology LLC
    Inventor: Drew Michael Mader
  • Patent number: 10460924
    Abstract: The present invention relates to a novel process for producing a surface-treated gallium arsenide substrate as well as novel provided gallium arsenide substrates as such as well as the use thereof. The improvement of the process according to the invention is based on a particular final surface treatment with an oxidation treatment of at least one surface of the gallium arsenide substrate in dry condition by means of UV radiation and/or ozone gas, a contacting of the at least one surface of the gallium arsenide substrate with at least one liquid medium and a Marangoni drying of the gallium arsenide substrate. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, specifically by means of ellipsometric lateral substrate mapping for the optical contact-free quantitative characterization.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: October 29, 2019
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Publication number: 20190287554
    Abstract: A temperature compensation equation is generated during manufacture of a heat-assisted magnetic recording (HAMR) disk drive using initial total currents supplied to a laser diode of the disk drive at different initial operating temperatures. The total currents represent currents for recording data to or erasing data from the medium. The temperature compensation equation is stored in the disk drive, and updated, during field operation, using a subsequent total current associated with an operating temperature differing from the initial operating temperatures. The total current supplied to the laser diode for a subsequent write operation is adjusted using the updated temperature compensation equation in response to the operating temperature at the time of the subsequent write operation.
    Type: Application
    Filed: October 25, 2018
    Publication date: September 19, 2019
    Inventors: Alfredo Sam Chu, Franklin P. Martens, Drew Michael Mader, Steven J. Kimble, James E. Angelo
  • Patent number: 10395673
    Abstract: A temperature compensation equation is generated during manufacture of a heat-assisted magnetic recording (HAMR) disk drive using initial total currents supplied to a laser diode of the disk drive at different initial operating temperatures. The total currents represent currents for recording data to or erasing data from the medium. The temperature compensation equation is stored in the disk drive, and updated, during field operation, using a subsequent total current associated with an operating temperature differing from the initial operating temperatures. The total current supplied to the laser diode for a subsequent write operation is adjusted using the updated temperature compensation equation in response to the operating temperature at the time of the subsequent write operation.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: August 27, 2019
    Assignee: Seagate Technology LLC
    Inventors: Alfredo Sam Chu, Franklin P. Martens, Drew Michael Mader, Steven J. Kimble, James E. Angelo
  • Patent number: 10339963
    Abstract: Pseudorandom bit sequences are recorded to a heat-assisted recording medium at a laser power that is stepped while recording the pseudorandom bit sequences. The pseudorandom bit sequences are read from the heat-assisted recording medium to determine timing differences between bits written before and after the laser power is stepped. A thermal gradient of bits written to the heat-assisted recording medium is determined based on the timing differences.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: July 2, 2019
    Assignee: Seagate Technology LLC
    Inventors: Drew Michael Mader, Ian James Gilbert, Walter R. Eppler, Tim Rausch
  • Patent number: 10127930
    Abstract: A temperature compensation equation is generated during manufacture of a heat-assisted magnetic recording (HAMR) disk drive using initial total currents supplied to a laser diode of the disk drive at different initial operating temperatures. The total currents represent currents for recording data to or erasing data from the medium. The temperature compensation equation is stored in the disk drive, and updated, during field operation, using a subsequent total current associated with an operating temperature differing from the initial operating temperatures. The total current supplied to the laser diode for a subsequent write operation is adjusted using the updated temperature compensation equation in response to the operating temperature at the time of the subsequent write operation.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 13, 2018
    Assignee: Seagate Technology LLC
    Inventors: Alfredo Sam Chu, Franklin P. Martens, Drew Michael Mader, Steven J. Kimble, James E. Angelo
  • Patent number: 10083716
    Abstract: A heat-assisted magnetic recording head is moved relative to a magnetic recording medium. The medium comprises a plurality of sectors. The sectors define a plurality of sector groups distributed around a circumference of the medium. The sectors of each sector group are written using different operational currents supplied to a laser diode of the head such that at least one sector from each sector group is written using one of the different operational currents. For each of the different operational currents, an average write performance metric is calculated for all sectors written at each of the different operational currents. A particular operational current of the different operational currents is determined that results in a best average write performance metric.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: September 25, 2018
    Assignee: Seagate Technology LLC
    Inventors: Alfredo Sam Chu, Drew Michael Mader, Joshua Ward Christensen, Jason W. Riddering