Patents by Inventor Michael M. Kelly

Michael M. Kelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931492
    Abstract: A system and method for balancing flows of renal replacement fluid is disclosed. The method uses pressure controls and pressure sensing devices to more precisely meter and balance the flow of fresh dialysate and spent dialysate. The balancing system may use one or two balancing devices, such as a balance tube, a tortuous path, or a balance chamber.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 19, 2024
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Michael E. Hogard, Donald D. Busby, Robert W. Childers, Yuanpang Samuel Ding, Katherine M. Holian, Mark E. Jablonski, Thomas D. Kelly, Shincy J. Maliekkal, Rodolfo G. Roger, Donald A. Smith, Atif M. Yardimci, Ying-Cheng Lo
  • Publication number: 20240076297
    Abstract: The present invention provides compounds of the structural Formula (I), and pharmaceutically acceptable salts thereof, wherein, are as defined herein, pharmaceutical compositions comprising one or more such compounds (alone and in combination with one or more other therapeutically active agents), and methods for their preparation and use, alone and in combination with other therapeutic agents, as antagonists of A2a and/or A2b receptors, and in the treatment of a variety of diseases, conditions, or disorders that are mediated, at least in part, by the adenosine A2a receptor and/or the adenosine A2b receptor.
    Type: Application
    Filed: July 22, 2021
    Publication date: March 7, 2024
    Applicant: Merck Sharp & Dohme LLC
    Inventors: Amjad Ali, Jared N. Cumming, Manuel De Lera Ruiz, Duane DeMong, Thomas H. Graham, Elisabeth T. Hennessy, Joseph M. Kelly, Rongze Kuang, Michael Man-Chu Lo, Umar Faruk Mansoor, Jesus Moreno, Uma Swaminathan, Heping Wu, Yingchun Ye, Younong Yu
  • Patent number: 10473694
    Abstract: A system for atomic force microscopy in which a sharp electrode tip of an flexing probe cantilever is positioned closely adjacent a sample being probed for its electrical characteristics. An optical beam irradiates a portion of the sample surrounding the probe tips and is modulated at a radio or lower modulation frequency. In one embodiment, a reference microwave signal is incident to the electrode tip. Microwave circuitry receives a microwave signal from the probe tip, which may be the reflection of the incident signal. Electronic circuitry processes the received signal with reference to the modulation frequency to produce one or more demodulated signals indicative of the electronic or atomic properties of the sample. Alternatively, the optical beam is pulsed and the demodulated signal is analyzed for its temporal characteristics. The beam may non-linearly produce the microwave signal. Two source lasers may have optical frequencies differing by the microwave frequency.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 12, 2019
    Assignee: Primenano, Inc.
    Inventors: Stuart L. Friedman, Michael M. Kelly
  • Publication number: 20190234993
    Abstract: A system for atomic force microscopy in which a sharp electrode tip of an flexing probe cantilever is positioned closely adjacent a sample being probed for its electrical characteristics. An optical beam irradiates a portion of the sample surrounding the probe tips and is modulated at a radio or lower modulation frequency. In one embodiment, a reference microwave signal is incident to the electrode tip. Microwave circuitry receives a microwave signal from the probe tip, which may be the reflection of the incident signal. Electronic circuitry processes the received signal with reference to the modulation frequency to produce one or more demodulated signals indicative of the electronic or atomic properties of the sample. Alternatively, the optical beam is pulsed and the demodulated signal is analyzed for its temporal characteristics. The beam may non-linearly produce the microwave signal. Two source lasers may have optical frequencies differing by the microwave frequency.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: Primenano, Inc.
    Inventors: Stuart L. Friedman, Michael M. Kelly
  • Patent number: 10274513
    Abstract: A system for atomic force microscopy in which a sharp electrode tip of an flexing probe cantilever is positioned closely adjacent a sample being probed for its electrical characteristics. An optical beam irradiates a portion of the sample surrounding the probe tips and is modulated at a radio or lower modulation frequency. In one embodiment, a reference microwave signal is incident to the electrode tip. Microwave circuitry receives a microwave signal from the probe tip, which may be the reflection of the incident signal. Electronic circuitry processes the received signal with reference to the modulation frequency to produce one or more demodulated signals indicative of the electronic or atomic properties of the sample. Alternatively, the optical beam is pulsed and the demodulated signal is analyzed for its temporal characteristics. The beam may non-linearly produce the microwave signal. Two source lasers may have optical frequencies differing by the microwave frequency.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: April 30, 2019
    Assignee: Primenano, Inc.
    Inventors: Stuart L. Friedman, Michael M. Kelly
  • Publication number: 20180217181
    Abstract: A system for atomic force microscopy in which a sharp electrode tip of an flexing probe cantilever is positioned closely adjacent a sample being probed for its electrical characteristics. An optical beam irradiates a portion of the sample surrounding the probe tips and is modulated at a radio or lower modulation frequency. In one embodiment, a reference microwave signal is incident to the electrode tip. Microwave circuitry receives a microwave signal from the probe tip, which may be the reflection of the incident signal. Electronic circuitry processes the received signal with reference to the modulation frequency to produce one or more demodulated signals indicative of the electronic or atomic properties of the sample. Alternatively, the optical beam is pulsed and the demodulated signal is analyzed for its temporal characteristics. The beam may non-linearly produce the microwave signal. Two source lasers may have optical frequencies differing by the microwave frequency.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 2, 2018
    Applicant: PrimeNano, Inc.
    Inventors: Stuart L. Friedman, Michael M. Kelly