Patents by Inventor Michael M. Schieber

Michael M. Schieber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090302226
    Abstract: A solid-state detector for detection of neutron and alpha particles detector and methods for manufacturing and use thereof are described. The detector has an active region formed of a polycrystalline semiconductor compound comprising a particulate semiconductor material sensitive to neutron and alpha particles radiation imbedded in a binder. The particulate semiconductor material contains at least one element sensitive to neutron and alpha particles radiation, selected from a group including 10Boron, 6Lithium, 113Cadmium, 157Gadolinium and 199Mercury. The semiconductor compound is sandwiched between an electrode assembly configured to detect the neutron and alpha particles interacting with the bulk of the active region. The binder can be either an organic polymer binder or inorganic binder. The organic polymer binder comprises at least one polymer that can be selected from the group comprising polystyrene, polypropylene, Humisealâ„¢ and Nylon-6.
    Type: Application
    Filed: February 8, 2006
    Publication date: December 10, 2009
    Applicant: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM
    Inventors: Michael M. Schieber, Assaf Zuck, Gad Marom
  • Patent number: 4094268
    Abstract: A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
    Type: Grant
    Filed: March 30, 1977
    Date of Patent: June 13, 1978
    Assignee: United States Department of Energy
    Inventors: Michael M. Schieber, Israel Beinglass, Giora Dishon
  • Patent number: 4091084
    Abstract: A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.
    Type: Grant
    Filed: June 6, 1977
    Date of Patent: May 23, 1978
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Michael M. Schieber
  • Patent number: 4030964
    Abstract: A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
    Type: Grant
    Filed: April 29, 1976
    Date of Patent: June 21, 1977
    Assignee: The United States of America as represented by the United States Energy Research and Development Administration
    Inventors: Michael M. Schieber, Israel Beinglass, Giora Dishon