Patents by Inventor Michael M. Thornton

Michael M. Thornton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12179604
    Abstract: The invention provides in some aspects a transport system comprising a guideway with a plurality of propulsion coils disposed along a region in which one or more vehicles are to be propelled. One or more vehicles are disposed on the guideway, each including a magnetic flux source. The guideway has one or more running surfaces that support the vehicles and along which they roll or slide. Each vehicle can have a septum portion of narrowed cross-section that is coupled to one or more body portions of the vehicle. The guideway includes a diverge region that has a flipper and an extension of the running surface at a vertex of the diverge. The flipper initiates switching of vehicle direction at a diverge by exerting a laterally directed force thereon. The extension continues switching of vehicle direction at the diverge by contacting the septum. Still other aspects of the invention provide a transport system, e.g.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: December 31, 2024
    Assignee: Rockwell Automation, Inc.
    Inventors: Nathanael N. King, Brian M. Perreault, Tracy M. Clark, Richard D. Thornton, Jason Young, Michael W. Bottasso, Jesse Mendenhall
  • Patent number: 11994549
    Abstract: A method for determining an electromagnetic field spatial distribution of a radio frequency (RF) antenna which includes the steps of emitting with the RF antenna, a plurality of RF energy pulses into a homogeneous medium; performing a plurality of thermoacoustic signal measurements of the plurality of RF energy pulses, wherein each of the thermoacoustic signal measurements is performed in a similar manner; utilizing a variance in the plurality of thermoacoustic signal measurements to generate a reconstructed pressure distribution for a volume located within the homogeneous medium; and calculating the RF antenna electromagnetic field spatial distribution within the volume based upon the reconstructed pressure distribution for the volume located within the homogeneous medium.
    Type: Grant
    Filed: December 31, 2023
    Date of Patent: May 28, 2024
    Inventors: Idan Steinberg, Michael M. Thornton, Christopher Nelson Davis, Jang Hwan Cho
  • Patent number: 11844650
    Abstract: A thermoacoustic measurement probe includes an open-ended hollow radio-frequency (RF) waveguide; at least two RF feeds positioned within the open-ended hollow RF waveguide, wherein each RF feed is configured to provide RF energy; and a thermoacoustic transducer, wherein the open-ended hollow RF waveguide, in the form of a sleeve, surrounds and is mechanically joined to the thermoacoustic transducer.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: December 19, 2023
    Assignees: ENDRA Life Sciences Inc., Duke University
    Inventors: Christopher Nelson Davis, Paolo Maccarini, Idan Steinberg, Michael M. Thornton
  • Patent number: 11828727
    Abstract: A thermoacoustic probe for a thermoacoustic imaging system, the probe including: a radio-frequency (RF) applicator having an insert, wherein the applicator is configured to transmit at least one radio frequency source; an integral electromagnetic matching and acoustic extinction layer having a substantially flat-planar side and a substantially convex side, wherein the substantially flat-planar side of the integral electromagnetic matching and acoustic extinction layer is coupled to the insert of the RF applicator; and an optical transducer coupled to the substantially convex side of the integral electromagnetic matching and acoustic extinction layer.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: November 28, 2023
    Inventors: Idan Steinberg, Michael M. Thornton
  • Patent number: 11806113
    Abstract: A thermoacoustic probe for a thermoacoustic imaging system, the probe including: a radio-frequency (RF) applicator having an insert, wherein the applicator is configured to transmit at least one radio frequency source; an electromagnetic matching layer coupled to the insert of the RF applicator; an optical transducer that is coupled to the electromagnetic matching layer; and an acoustic matching layer that is coupled to the optical transducer.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: November 7, 2023
    Inventors: Idan Steinberg, Michael M. Thornton
  • Patent number: 11730374
    Abstract: A radio frequency applicator for a thermoacoustic imaging system is disclosed. The applicator includes, a waveguide with an internal radio frequency source, wherein the waveguide has an opening, an electromagnetic matching layer coupled to the waveguide and proximate to the opening, and an acoustic absorbing layer that is coupled to the matching layer.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: August 22, 2023
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jordan Sengenberger, Christopher Nelson Davis, Christopher Bull, Charlton Chen, Jang Hwan Cho, Idan Steinberg, Michael M. Thornton
  • Patent number: 11619613
    Abstract: A thermoacoustic measurement probe may include an open-ended hollow radio-frequency (RF) waveguide; and a thermoacoustic transducer, wherein the open-ended hollow RF waveguide, in the form of a sleeve, surrounds and is mechanically joined to the thermoacoustic transducer.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: April 4, 2023
    Assignees: ENDRA Life Sciences Inc., Duke University
    Inventors: Christopher Nelson Davis, Paolo Maccarini, Idan Steinberg, Michael M. Thornton
  • Patent number: 11574734
    Abstract: A method for exchange of equipment performance data includes the steps of: obtaining performance data of a communicatively-insulated device; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a communicatively-enabled device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; initiating, by the communicatively-enabled device, a communications link with the remote server using the address string thereby to provide the performance data to the remote server; performing, by the remote server, analytics on the performance data; and sending historic device performance data and/or analytical results to a remote computing device and/or sending a link to the historic device performance data and/or analytical results to the remote computing device; wherein the communicatively-insulated device is medical imaging equipment and wherein obtaining the p
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: February 7, 2023
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Patent number: 11575760
    Abstract: A method for exchange of equipment performance data includes the steps of: obtaining performance data of a communicatively-insulated device; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a communicatively-enabled device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; initiating, by the communicatively-enabled device, a communications link with the remote server using the address string thereby to provide the performance data to the remote server; performing, by the remote server, analytics on the performance data; and sending historic device performance data and/or analytical results to a remote computing device and/or sending a link to the historic device performance data and/or analytical results to the remote computing device; wherein the communicatively-insulated device is packaging equipment and wherein obtaining the perform
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: February 7, 2023
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Publication number: 20220386992
    Abstract: A thermoacoustic imaging device for coupling to a region of interest on a patient is disclosed. The device includes a housing having a surface, wherein the surface comprises an acoustic coupling portion having a substantially perpendicular extent relative to the surface. In one embodiment, the perpendicular extent extends to the surface. In one embodiment, the perpendicular extent extends to the surface and the outwardly from the surface. In one embodiment, the perpendicular extent extends only from the surface.
    Type: Application
    Filed: June 6, 2021
    Publication date: December 8, 2022
    Applicant: ENDRA Life Sciences Inc.
    Inventors: Jordan Sengenberger, Michael M. Thornton
  • Patent number: 11478153
    Abstract: A system utilizing thermoacoustic imaging to estimate tissue temperature within a region of interest that includes an object of interest and a reference which are separated by at least one boundary located at least at two boundary locations. The system uses a thermoacoustic imaging system that includes an adjustable radio frequency (RF) applicator configured to emit RF energy pulses into the tissue region of interest and heat tissue therein and an acoustic receiver configured to receive multi-polar acoustic signals generated in response to heating of tissue in the region of interest; and one or more processors that are able to: process received multi-polar acoustic generated in the region of interest in response to the RF energy pulses to determine a peak-to-peak amplitude thereof; and calculate a temperature at the at least two boundary locations using the peak-to-peak amplitudes of the multi-polar acoustic signals and a distance between the boundary locations.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 25, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jang Hwan Cho, Paul A. Picot, Michael M. Thornton
  • Patent number: 11456518
    Abstract: A method for manufacturing a radio frequency (RF) applicator which includes covering a ceramic insert with a coating, wherein the ceramic insert has dimensions that substantially match an internal volume of an open-ended, hollow waveguide, and wherein the ceramic insert has a recess therein configured to accept a radio frequency emitter, heating the waveguide to a temperature that is above a melting point of the coating, placing the coated ceramic insert into the internal volume of the heated waveguide, wherein the internal volume is completely filled except for the recess, and cooling the waveguide, ceramic insert, and coating to a temperature below the melting point of the coating so that the coating solidifies and fills gaps between facing surfaces of the insert and the waveguide.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 27, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Christopher Nelson Davis, Charlton Chen, Michael M. Thornton
  • Patent number: 11405470
    Abstract: A method for exchange of equipment performance data includes the steps of: obtaining performance data of a communicatively-insulated device; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a communicatively-enabled device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; and initiating, by the communicatively-enabled device, a communications link with the remote server using the address string thereby to provide the performance data to the remote server.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: August 2, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Patent number: 11392479
    Abstract: A method for an exchange of equipment performance data including the steps of: obtaining performance data of a device not having internet connectivity; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a computing device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; initiating, by the computing device, an internet connection with the remote server using the address string thereby to provide the performance data to the remote server; performing, by the remote server, analytics on the device performance data; and sending historic device performance data and/or analytical results to a remote computing device and/or sending a link to the historic device performance data and/or analytical results to the remote computing device; wherein the device is packaging equipment and wherein obtaining the performance data comprises: running a cali
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: July 19, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Patent number: 11379343
    Abstract: A method for an exchange of equipment performance data including the steps of: obtaining performance data of a device not having internet connectivity; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a computing device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; initiating, by the computing device, an internet connection with the remote server using the address string thereby to provide the performance data to the remote server; performing, by the remote server, analytics on the device performance data; and sending historic device performance data and/or analytical results to a remote computing device and/or sending a link to the historic device performance data and/or analytical results to the remote computing device; wherein the device is medical imaging equipment and wherein obtaining the performance data comprises scanning
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: July 5, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Patent number: 11337676
    Abstract: A method and system for optimizing RF energy delivery to a tissue ROI with a thermoacoustic system includes directing with a RF applicator, RF energy pulses into the tissue ROI having an object of interest and a reference separated by a boundary; detecting with a thermoacoustic transducer, a multi-polar thermoacoustic signal generated at the boundary in response to the RF energy pulses and processing the multi-polar acoustic signal to determine a peak-to-peak amplitude; detecting with the thermoacoustic transducer, an artifact multi-polar thermoacoustic signal generated at a location other than the boundary and processing it to determine a peak-to-peak amplitude; utilizing an electromagnetic model coupled with a model of patient anatomy to place dielectric or conducting materials near the thermoacoustic transducer or the RF applicator to optimize a signal-to-noise ratio of the multi-polar thermoacoustic signal generated at the boundary or minimize the artifact multi-polar thermoacoustic signal generated at a
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: May 24, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Amanda Margaret Barnes, Christopher Nelson Davis, Michael M. Thornton
  • Patent number: 11314617
    Abstract: A method for an exchange of equipment performance data including the steps of: obtaining performance data of a device not having Internet connectivity; converting the performance data into a scannable code; capturing an image of the scannable code; decoding the scannable code using a computing device to extract an address string encoded in the scannable code, the address string comprising an address of a remote server and the performance data; and initiating, by the computing device, an Internet connection with the remote server using the address string thereby to provide the performance data to the remote server.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: April 26, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jeremy Gill, Michael M. Thornton
  • Patent number: 11304606
    Abstract: A method and system for enhancing radio frequency energy delivery to a tissue region of interest. The method and system direct with a radio frequency (RF) applicator, one or more RF energy pulses into the tissue region of interest, the tissue region of interest comprising an object of interest and at least one reference that are separated by at least one boundary; detect with an acoustic receiver, at least one bipolar acoustic signal generated in the tissue region of interest in response to the RF energy pulses and processing the at least one bipolar acoustic signal to determine a peak-to-peak amplitude thereof; adjust the RF applicator to maximize the peak-to-peak amplitude of bipolar acoustic signals generated in the tissue region of interest in response to RF energy pulses generated by the adjusted RF applicator; and direct with the adjusted RF applicator, one or more RF energy pulses into the region of interest.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: April 19, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Christopher Nelson Davis, Jang Hwan Cho, Paul A. Picot, Michael M. Thornton
  • Publication number: 20210373108
    Abstract: A multi-modality fatty tissue mimicking material for phantoms for use with thermoacoustic imaging, ultrasound imaging and magnetic resonance imaging, which includes: an aqueous mixture of a 3% to 18% thickening agent, a 1% to 30% protein powder, a 0.1% to 2% ionic salt, a 30% to 85% water, and a 0% to 60% oil by weight, wherein the oil percentage corresponds to the fat percentage in tissue, further wherein the ionic salt percentage corresponds to an imaginary part of complex permittivity in tissue, and further wherein the water, oil and protein powder percentages correspond to the real part of complex permittivity in tissue.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Applicant: ENDRA Life Sciences Inc.
    Inventors: Chen Charlton, Michael M. Thornton
  • Patent number: 11172829
    Abstract: A thermoacoustic transducer integrating at least one piezoelectric element having a first surface and a second surface, a potential electrode that is electrically connected to the second surface, a ground electrode that is electrically connected to the first surface, a switch electrically connected to both the potential electrode and the ground electrode, a timer configured to match a pulse emanating from a radio-frequency emitter, further wherein the potential electrode and the ground electrode are electrically connected through an impedance when the switch is in an active state, further wherein the potential electrode and the ground electrode are not electrically connected when the switch is in an inactive state; and a housing accommodating the at least one piezoelectric element, potential electrode, ground electrode, and switch.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: November 16, 2021
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Zackary Marc Mumm, Christopher Nelson Davis, Michael M. Thornton, Jang Hwan Cho