Patents by Inventor Michael Max

Michael Max has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080053882
    Abstract: Desalination apparatus based on porous restraint panels fabricated from a number of different layers of metal, thermoplastic, or other substances are used as sophisticated heat exchangers to control the growth of gas hydrate. The gas hydrate is produced after infusion of liquid hydrate-forming material into water to be treated, which liquid hydrate-forming material can also be used to carry out all the refrigeration necessary to cool seawater to near the point of hydrate formation and to cool the porous restraint panels. Hydrate forms on and dissociates through the porous restraints. The composite restraint panels can also be used in gaseous atmospheres where, for instance, it is desired to remove dissolved water.
    Type: Application
    Filed: May 8, 2007
    Publication date: March 6, 2008
    Inventor: Michael Max
  • Publication number: 20070079624
    Abstract: Improved apparatus and methods for use in atmospheric moisture harvesters are disclosed. In particular, sectored or zoned cooling/condensation surfaces to optimize cooling efficiency are disclosed. In one embodiment, cooling is provided by dual-refrigerant, buffered cooling cells. In another embodiment, cooling is provided by thermoelectric cooling devices. Where thermoelectric cooling devices are used, an airway duct that covers both the cool side and the warm side of the devices can be provided, such that an airflow system that is driven by the difference in density between cooled, de-moisturized air and warmed air is established. Localized temperatures and moisture levels are monitored so that cooling can be adjusted as necessary to provide optimal, most energy-efficient condensation of moisture.
    Type: Application
    Filed: October 7, 2005
    Publication date: April 12, 2007
    Inventor: Michael Max
  • Publication number: 20060273036
    Abstract: Toxic waste waters polluted with high levels of chemical byproducts of various industrial processes (e.g., waste water held in industrial holding ponds) are treated using gas hydrate to extract and remove fresh water from the polluted water, thus reducing the volume of toxic waste water inventories. Extracting fresh water by forming and removing the hydrate raises the concentration of dissolved materials in the residual concentrated brines to levels at which the residual fluid is suitable for use as an industrial feedstock. Furthermore, so raising the concentration of the residual brine will cause certain mineral species to precipitate out of solution, which mineral species are separated from the fluid and may be put to other uses, as appropriate. Food products are also advantageously concentrated by means of gas hydrates.
    Type: Application
    Filed: August 16, 2006
    Publication date: December 7, 2006
    Inventors: Michael Max, John Osegovic
  • Publication number: 20060049105
    Abstract: A multi-channel apparatus through which saline water flows continuously contains two separate series of channelways defined by porous membranes. The membranes have pore sizes such that a wide variety of dissolved ions can pass through them. Electrodes or capacitors suitable for attracting dissolved ions are provided within each of the channels in one of the sets of water channelways (“the concentrate channelways”). Ions are concentrated within the series of channelways in which the electrodes or capacitors are provided by applying electrically attractive force in order to capture, concentrate, and remove the dissolved ions from the other series of deionized channelways (“the deionization channelways”). Ions are captured from both sets of channelways and concentrated in the concentrate channels. The concentrate and deionized water streams flow continuously through their respective series of channelways and are removed from the apparatus separately to keep the concentrate and deionized water from mixing.
    Type: Application
    Filed: September 7, 2004
    Publication date: March 9, 2006
    Applicant: Marine Desalination Systems, L.L.C.
    Inventor: Michael Max
  • Publication number: 20050247640
    Abstract: In hydrate-based desalination or other water purification conducted using naturally buoyant or trapped-gas-assisted buoyancy hydrate in a hydrate fractionation column, a portion of fresh or purified product water is extracted from an upper, hydrate dissociation region of the fractionation column and reintroduced into a lower portion of the fractionation column at a point above but generally near a product water/saline water interface. The difference in density between the reintroduced product water and the fluid in the hydrate fractionation column above the point of reintroduction (water, hydrate, and gas) drives a natural circulation system which enhances the rate at which hydrate rises into the hydrate dissociation region.
    Type: Application
    Filed: September 8, 2003
    Publication date: November 10, 2005
    Inventors: Michael Max, Jens Korsgaard
  • Publication number: 20050194299
    Abstract: Processes and apparatus are disclosed for separating and purifying aqueous solutions such as seawater by causing a substantially impermeable mat of gas hydrate to form on a porous restraint. Once the mat of gas hydrate has formed on the porous restraint, the portion of the mat of gas hydrate adjacent to the restraint is caused to dissociate and flow through the restraint, e.g., by lowering the pressure in a collection region on the opposite side of the restraint. The purified or desalinated water may then be recovered from the collection region. The process may be used for marine desalination as well as for drying wet gas and hydrocarbon solutions. If conditions in the solution are not conductive to forming hydrate, a heated or refrigerated porous restraint may be used to create hydrate-forming conditions near the restraint, thereby causing gas hydrates to form directly on the surface of the restraint.
    Type: Application
    Filed: March 25, 2005
    Publication date: September 8, 2005
    Applicant: Marine Desalination Systems, L.L.C.
    Inventor: Michael Max
  • Publication number: 20050184010
    Abstract: Processes and apparatus are disclosed for separating and purifying aqueous solutions such as seawater by causing a substantially impermeable mat of gas hydrate to form on a porous restraint. Once the mat of gas hydrate has formed on the porous restraint, the portion of the mat of gas hydrate adjacent to the restraint is caused to dissociate and flow through the restraint, e.g., by lowering the pressure in a collection region on the opposite side of the restraint. The purified or desalinated water may then be recovered from the collection region. The process may be used for marine desalination as well as for drying wet gas and hydrocarbon solutions. If conditions in the solution are not conductive to forming hydrate, a heated or refrigerated porous restraint may be used to create hydrate-forming conditions near the restraint, thereby causing gas hydrates to form directly on the surface of the restraint.
    Type: Application
    Filed: March 25, 2005
    Publication date: August 25, 2005
    Applicant: Marine Desalination Systems, L.L.C.
    Inventor: Michael Max
  • Publication number: 20050082214
    Abstract: An apparatus is disclosed which allows the hydrate formed in the hydrate formation region of a desalination fractionation apparatus to be cooled as it rises in the apparatus. This has the beneficial effect of increasing its stability at lower pressures and reducing the depth at which the hydrate will begin to dissociate. The present invention provides for more efficient management of the distribution of thermal energy within the apparatus as a whole by controlling the flow of water through the system—particularly residual fluids remaining after hydrate forms—such that it is substantially downward through the fractionation column and out through a lower portion thereof. Hydrate thus separates from the residual fluid at or nearly at the point of formation, which helps keep the hydrate formation region of the apparatus at a temperature suitable for the formation of hydrate and improves efficiency.
    Type: Application
    Filed: October 17, 2003
    Publication date: April 21, 2005
    Applicant: MARINE DESALINATION SYSTEMS, L.L.C.
    Inventor: Michael Max
  • Publication number: 20010005663
    Abstract: A collapsed steering and control mechanism for pop-up toy vehicles which mechanism is immediately operational after being popped up.
    Type: Application
    Filed: January 24, 2001
    Publication date: June 28, 2001
    Inventor: Michael Max