Patents by Inventor Michael Moffitt

Michael Moffitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12144995
    Abstract: A system and method for selecting leadwire stimulation parameters includes a processor iteratively performing, for each of a plurality of values for a particular stimulation parameter, each value corresponding to a respective current field: (a) shifting the current field longitudinally and/or rotationally to a respective plurality of locations about the leadwire; and (b) for each of the respective plurality of locations, obtaining clinical effect information regarding a respective stimulation of the patient tissue produced by the respective current field at the respective location; and displaying a graph plotting the clinical effect information against values for the particular stimulation parameter and locations about the leadwire, and/or based on the obtained clinical effect information, identifying an optimal combination of a selected value for the particular stimulation parameter and selected location about the leadwire at which to perform a stimulation using the selected value.
    Type: Grant
    Filed: January 25, 2024
    Date of Patent: November 19, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Dean Chen, Michael A. Moffitt
  • Patent number: 12138460
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input, use the patient input, clinician input, or automatic input in a search method. The search method may be designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set and to program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: November 12, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Publication number: 20240342480
    Abstract: A method and external device for providing sub-perception stimulation to a patient via an implantable stimulator device is disclosed. Stimulation parameters for the patient are determined that provide sub-perception stimulation to address a symptom of the patient. A schedule is determined to provide scheduled boluses of stimulation, where each bolus comprises a duration during which stimulation is applied to the patient in accordance with the stimulation parameters, and where the scheduled boluses are separated by off times when no stimulation is provided to the patient. Preferably, the duration of each of the scheduled boluses is 3 minutes or longer, and the duration of each of the off times is 30 minutes or greater. Additional boluses can be provided on demand in addition to the scheduled boluses by selecting an option on the external device, although the provision of such additional boluses may be constrained by a lockout period.
    Type: Application
    Filed: June 25, 2024
    Publication date: October 17, 2024
    Inventors: Que T. Doan, Michael A. Moffitt
  • Publication number: 20240335653
    Abstract: A method is disclosed for programming a patient's stimulator device using an external device. The method provides a Graphical User Interface (GUI) on the external device that allows the patient to select from a plurality of displayed stimulation modes to program stimulation provided by one or more electrodes of the stimulator device. The external device stores a model derived for the patient, which model comprises information indicative of a plurality of frequency/pulse width/amplitude coordinates predicted to provide optimal stimulation for the patient. Each stimulation mode corresponds with a subset of coordinates defined in accordance with the plurality of coordinates in the model. Selection of one of the stimulation modes limits programming the stimulator device with coordinates that are within the corresponding subset of coordinates.
    Type: Application
    Filed: June 20, 2024
    Publication date: October 10, 2024
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Changfang Zhu, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20240335656
    Abstract: This document discusses, among other things, systems and methods for programming neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an input circuit that receives a modulation magnitude representing a level of stimulation intensity, a memory that stores a plurality of gain functions associated with a plurality of modulation parameters, and a electrostimulator that may generate and deliver an electrostimulation therapy. A controller may program the electrostimulator with the plurality of modulation parameters based on the received modulation magnitude and the plurality of gain functions, and control the electrostimulator to generate electrostimulation therapy according to the plurality of modulation parameters.
    Type: Application
    Filed: June 17, 2024
    Publication date: October 10, 2024
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20240307705
    Abstract: Subcutaneous photobiomodulation (PBM) is described for treatment of one or more medical conditions, including pulmonary fibrosis, an abnormality in upper airway function, hypertension, congestive heart failure, pulmonary hypertension, etc. The system includes a light source that can generate light inside the body (subcutaneously), a light transmission medium to transmit the light to an emitter, and the emitter sized and shaped to deliver the light directly to a target area associated with pulmonary fibrosis, an abnormality in upper airway function, hypertension, congestive heart failure, and/or pulmonary hypertension.
    Type: Application
    Filed: February 21, 2022
    Publication date: September 19, 2024
    Inventors: Michael MOFFITT, Stephen LEWIS, Michael JENKINS
  • Patent number: 12090324
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for providing sub-perception Spinal Cord Stimulation therapy using low frequency pulses. The waveforms comprise anodic and cathodic pulses which are effectively monophasic in nature, although low-level, non-therapeutic charge recovery can also be used.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 17, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Que Doan
  • Publication number: 20240299749
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: May 17, 2024
    Publication date: September 12, 2024
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 12083343
    Abstract: A system is disclosed in one example which allows for modelling the wellness of a given Implantable Pulse Generator (IPG) patient. The modelling, embodied in an algorithm, uses one or more qualitative measurements and one or more quantitative measurements taken from the patient. The algorithm correlates the qualitative measurements to the various quantitative measurements to eventually, over time, learn which quantitative measurements best correlate to the qualitative measurements provided by the patient. The algorithm can then using current quantitative measurements predict a wellness factor or score for the patient, which is preferably weighted to favor the quantitative measurements that best correlate to that patient's qualitative assessment of therapy effectiveness. Additionally, the wellness factor may be used to adjust the stimulation program that the IPG device provides to the patient.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 10, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 12070607
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: August 27, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Patent number: 12070598
    Abstract: This document discusses, among other things, systems and methods for programming neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an input circuit that receives a modulation magnitude representing a level of stimulation intensity, a memory that stores a plurality of gain functions associated with a plurality of modulation parameters, and a electrostimulator that may generate and deliver an electrostimulation therapy. A controller may program the electrostimulator with the plurality of modulation parameters based on the received modulation magnitude and the plurality of gain functions, and control the electrostimulator to generate electrostimulation therapy according to the plurality of modulation parameters.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: August 27, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20240252831
    Abstract: A neurostimulation system configured for providing neurostimulation therapy to a patient. A user customizes a pulse pattern on a pulse-by-pulse basis. Electrical stimulation energy is delivered to at least one electrode in accordance with the customized pulse pattern.
    Type: Application
    Filed: April 8, 2024
    Publication date: August 1, 2024
    Inventor: Michael A. Moffitt
  • Publication number: 20240245920
    Abstract: Methods for determining stimulation for a patient having a stimulator device are disclosed. A model is received at an external system indicative of a range or volume of preferred stimulation parameters, which model is preferably specific to and determined for the patient. The external system receives a plurality of pieces of fitting information for the patient, including information indicative of a symptom of the patient, information indicative of stimulation provided by the stimulator device during a fitting procedure, and/or phenotype information for the patient. The external system determines one or more sets of stimulation parameters for the patient using the pieces of fitting information. In one example, training data is applied to the pieces of fitting information to select the one or more sets of stimulation parameters from the range or volume of preferred stimulation parameters in the model.
    Type: Application
    Filed: March 5, 2024
    Publication date: July 25, 2024
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Michael A. Moffitt, Changfang Zhu
  • Patent number: 12042656
    Abstract: A method and external device for providing sub-perception stimulation to a patient via an implantable stimulator device is disclosed. Stimulation parameters for the patient are determined that provide sub-perception stimulation to address a symptom of the patient. A schedule is determined to provide scheduled boluses of stimulation, where each bolus comprises a duration during which stimulation is applied to the patient in accordance with the stimulation parameters, and where the scheduled boluses are separated by off times when no stimulation is provided to the patient. Preferably, the duration of each of the scheduled boluses is 3 minutes or longer, and the duration of each of the off times is 30 minutes or greater. Additional boluses can be provided on demand in addition to the scheduled boluses by selecting an option on the external device, although the provision of such additional boluses may be constrained by a lockout period.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 23, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Michael A. Moffitt
  • Publication number: 20240226558
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Application
    Filed: March 21, 2024
    Publication date: July 11, 2024
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20240220094
    Abstract: An optical modulation system includes a user interface including a plurality of user-selectable controls to select or adjust values for each of a plurality of modulation parameters and estimating a modulation dosage or irradiance at a target based on, at least, the target, a location of an optical modulation lead, values of the modulation parameters, and estimated light attenuation by tissue between the optical modulation lead and the target. An optical modulation system can limit selection of the value of at least one of the modulation parameters by at least one of a) an estimation of a modulation dosage at the target or b) an estimation of a dosage, temperature change, temperature, heating, or delivering energy at non-target issue.
    Type: Application
    Filed: December 27, 2023
    Publication date: July 4, 2024
    Inventors: Joshua Dale Howard, Michael A. Moffitt, Changfang Zhu
  • Patent number: 12017061
    Abstract: A method is disclosed for programming a patient's stimulator device using an external device. The method provides a Graphical User Interface (GUI) on the external device that allows the patient to select from a plurality of displayed stimulation modes to program stimulation provided by one or more electrodes of the stimulator device. The external device stores a model derived for the patient, which model comprises information indicative of a plurality of frequency/pulse width/amplitude coordinates predicted to provide optimal stimulation for the patient. Each stimulation mode corresponds with a subset of coordinates defined in accordance with the plurality of coordinates in the model. Selection of one of the stimulation modes limits programming the stimulator device with coordinates that are within the corresponding subset of coordinates.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: June 25, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Changfang Zhu, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20240198128
    Abstract: An optical lead can include a cuff body having an exterior surface and an interior surface, wherein the cuff body defines a nerve channel for receiving a portion of a nerve; a lead body coupled, or coupleable, to the cuff body; at least one light emitter disposed on or within the cuff body or the lead body; and at least one reflective element disposed on, within, or beneath the interior surface of the cuff body, wherein the at least one reflective element is configured to reflect light emitted from the at least one light emitter. Alternatively or additionally, the cuff lead can include a receptacle for removably receiving a distal end portion of the lead body. Another system includes a cuff body with at least one light emitter, an electronic subassembly for operation, and an antenna to receive power from an external source.
    Type: Application
    Filed: October 17, 2023
    Publication date: June 20, 2024
    Inventors: Michael Jenkins, Junqi Zhuo, Michael A. Moffitt, Joshua Dale Howard, Changfang Zhu
  • Publication number: 20240157157
    Abstract: A system and method for selecting leadwire stimulation parameters includes a processor iteratively performing, for each of a plurality of values for a particular stimulation parameter, each value corresponding to a respective current field: (a) shifting the current field longitudinally and/or rotationally to a respective plurality of locations about the leadwire; and (b) for each of the respective plurality of locations, obtaining clinical effect information regarding a respective stimulation of the patient tissue produced by the respective current field at the respective location; and displaying a graph plotting the clinical effect information against values for the particular stimulation parameter and locations about the leadwire, and/or based on the obtained clinical effect information, identifying an optimal combination of a selected value for the particular stimulation parameter and selected location about the leadwire at which to perform a stimulation using the selected value.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Inventors: Stephen Carcieri, Dean Chen, Michael A. Moffitt
  • Patent number: 11980765
    Abstract: A neurostimulation system configured for providing neurostimulation therapy to a patient. A user customizes a pulse pattern on a pulse-by-pulse basis. Electrical stimulation energy is delivered to at least one electrode in accordance with the customized pulse pattern.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: May 14, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt