Patents by Inventor Michael N. Horak

Michael N. Horak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8527214
    Abstract: A mechanical seal monitoring system and method that measure the wear of seal faces of a mechanical seal where the mechanical seal seals a rotating machine portion from another portion of the machine. The system preferably uses a wear probe movable relative to a rotating seal component so that the wear probe can contact the rotating component. The wear of the seal is preferably determined by the relative movement that is required for the wear probe to contact the rotating component. Preferably, stress waves induced by the rubbing between the probe and the rotating component are detected by a stress-wave sensor, processed by a signal processor, and either displayed to the user numerically or reported to a monitoring computer. A signal intensity comparison method is preferably used to make the detection process insensitive to background noise generated by sources other than the contact of the wear probe and the rotating component.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 3, 2013
    Inventor: Michael N. Horak
  • Publication number: 20100106429
    Abstract: A mechanical seal monitoring system and method that measure the wear of seal faces of a mechanical seal where the mechanical seal seals a rotating machine portion from another portion of the machine. The system preferably uses a wear probe movable relative to a rotating seal component so that the wear probe can contact the rotating component. The wear of the seal is preferably determined by the relative movement that is required for the wear probe to contact the rotating component. Preferably, stress waves induced by the rubbing between the probe and the rotating component are detected by a stress-wave sensor, processed by a signal processor, and either displayed to the user numerically or reported to a monitoring computer. A signal intensity comparison method is preferably used to make the detection process insensitive to background noise generated by sources other than the contact of the wear probe and the rotating component.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 29, 2010
    Inventor: Michael N. Horak
  • Patent number: 7533563
    Abstract: A fuel injector testing system and method that make accurate determination of the condition of an injector installed in an engine possible even if the injector is hidden under or behind engine components. A waveguide attached to the injector guides stress waves generated when the injector pintle is opened or closed to a location on the engine that is accessible by a technician. A stress-wave sensor attached to the accessible end of the waveguide measures the stress-wave intensity and plots on a display its magnitude vs. time. A technician testing a fuel injector can read from the display the numerically accurate impact intensities and the precise timing of the injector pintle opening and closing movements. The display can also compute automatically the values of the impact intensities and the length of time that the injector valve was open. This allows the technician to quickly detect a faulty injector.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 19, 2009
    Inventor: Michael N. Horak
  • Publication number: 20090019935
    Abstract: A fuel injector testing system and method that make accurate determination of the condition of an injector installed in an engine possible even if the injector is hidden under or behind engine components. A waveguide attached to the injector guides stress waves generated when the injector pintle is opened or closed to a location on the engine that is accessible by a technician. A stress-wave sensor attached to the accessible end of the waveguide measures the stress-wave intensity and plots on a display its magnitude vs. time. A technician testing a fuel injector can read from the display the numerically accurate impact intensities and the precise timing of the injector pintle opening and closing movements. The display can also compute automatically the values of the impact intensities and the length of time that the injector valve was open. This allows the technician to quickly detect a faulty injector.
    Type: Application
    Filed: September 4, 2007
    Publication date: January 22, 2009
    Inventor: Michael N. Horak