Patents by Inventor Michael North-Morris

Michael North-Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9857169
    Abstract: An interferometer includes a short-coherence source and an internal path-matching assembly contained within its housing. Because path matching occurs within the housing of the interferometer, it is removed from external environmental factors that affect measurements. Therefore, a single cateye measurement of an exemplary surface can be performed in advance and stored as a calibration for subsequent radius-of-curvature measurements. In one embodiment, a path-matching stage is incorporated into a dynamic interferometer where orthogonally polarized test and reference beams are fed to a dynamic imaging system. In another embodiment, orthogonal linearly polarized test and reference beams are injected into a remote dynamic interferometer by means of one single-mode polarization-maintaining optical fiber.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: January 2, 2018
    Assignee: 4D TECHNOLOGY CORPORATION
    Inventors: Michael North Morris, James Millerd
  • Patent number: 8345258
    Abstract: An optical device for characterizing a test surface combines a Fizeau interferometer with a polarization frequency-shifting element. Two substantially collinear, orthogonally polarized beams having respective frequencies differing by a predetermined frequency shift are generated by the polarization frequency-shifting element and projected into the Fizeau optical cavity to produce a pair of test beams and a pair of reference beams, wherein the beams in each pair have orthogonal polarization states and have frequencies differing by the predetermined frequency shift. A second, substantially equal frequency shift is introduced in the Fizeau cavity on either one of the pairs of test and reference beams, thereby generating a four-beam collinear output that produces an interferogram without tilt or short-coherence light. The invention may also be implemented by reversing the order of the Fizeau cavity and the polarization frequency-shifting element in the optical train.
    Type: Grant
    Filed: February 6, 2010
    Date of Patent: January 1, 2013
    Assignee: 4 D Technology Corporation
    Inventors: James E. Millerd, Michael North-Morris
  • Publication number: 20100134801
    Abstract: An optical device for characterizing a test surface combines a Fizeau interferometer with a polarization frequency-shifting element. Two substantially collinear, orthogonally polarized beams having respective frequencies differing by a predetermined frequency shift are generated by the polarization frequency-shifting element and projected into the Fizeau optical cavity to produce a pair of test beams and a pair of reference beams, wherein the beams in each pair have orthogonal polarization states and have frequencies differing by the predetermined frequency shift. A second, substantially equal frequency shift is introduced in the Fizeau cavity on either one of the pairs of test and reference beams, thereby generating a four-beam collinear output that produces an interferogram without tilt or short-coherence light. The invention may also be implemented by reversing the order of the Fizeau cavity and the polarization frequency-shifting element in the optical train.
    Type: Application
    Filed: February 6, 2010
    Publication date: June 3, 2010
    Applicant: 4D TECHNOLOGY CORPORATION
    Inventors: JAMES E. MILLERD, MICHAEL NORTH-MORRIS
  • Patent number: 7675628
    Abstract: An optical device for characterizing a test surface combines a Fizeau interferometer with a polarization frequency-shifting element. Two substantially collinear, orthogonally polarized beams having respective frequencies differing by a predetermined frequency shift are generated by the polarization frequency-shifting element and projected into the Fizeau optical cavity to produce a pair of test beams and a pair of reference beams, wherein the beams in each pair have orthogonal polarization states and have frequencies differing by the predetermined frequency shift. A second, substantially equal frequency shift is introduced in the Fizeau cavity on either one of the pairs of test and reference beams, thereby generating a four-beam collinear output that produces an interferogram without tilt or short-coherence light. The invention may also be implemented by reversing the order of the Fizeau cavity and the polarization frequency-shifting element in the optical train.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 9, 2010
    Assignee: 4D Technology Corporation
    Inventors: James E. Millerd, Michael North-Morris
  • Publication number: 20080062428
    Abstract: An optical device for characterizing a test surface combines a Fizeau interferometer with a polarization frequency-shifting element. Two substantially collinear, orthogonally polarized beams having respective frequencies differing by a predetermined frequency shift are generated by the polarization frequency-shifting element and projected into the Fizeau optical cavity to produce a pair of test beams and a pair of reference beams, wherein the beams in each pair have orthogonal polarization states and have frequencies differing by the predetermined frequency shift. A second, substantially equal frequency shift is introduced in the Fizeau cavity on either one of the pairs of test and reference beams, thereby generating a four-beam collinear output that produces an interferogram without tilt or short-coherence light. The invention may also be implemented by reversing the order of the Fizeau cavity and the polarization frequency-shifting element in the optical train.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 13, 2008
    Applicant: 4D TECHNOLOGY CORPORATION
    Inventors: James E. Millerd, Michael North-Morris
  • Publication number: 20050025198
    Abstract: A tracking stage has an optical filter with a free spectral range greater than the maximum mode hop of a tunable laser. The free spectral range is sufficient to determine the wavelength of the laser output after the mode hop. The output is dithered or a quadrature signal is used to determine whether the mode hop is forwards or backwards. In a further embodiment, a second tracking stage with a shorter free spectral range is coupled to the tunable laser to provide enhanced wavelength resolution. Alternatively, the second tracking stage is omitted and the signal of the tracking stage is amplified to enhance wavelength resolution.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 3, 2005
    Inventors: Michael North-Morris, Anthony Lee