Patents by Inventor Michael O. Thompson

Michael O. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724232
    Abstract: A method providing direct access to porous three-dimensionally (3D) continuous polymer network structures and shapes by combining BCP-resol co-assembly with CO2 laser-induced transient heating. The CO2 laser source transiently heats the BCP-directed resol hybrid films to high temperatures at the beam position, inducing locally controlled resol thermopolymerization and BCP decomposition in ambient conditions. This enables shaping of BCP-directed porous resin structures with tunable 3D interconnected pores in a single process. Pore size can be varied from 10 nm to about 600 nm.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 15, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Ulrich B. Wiesner, Michael O. Thompson, Kwan Wee Tan, Byungki Jung
  • Patent number: 11186494
    Abstract: Provided is room temperature stable ?-phase Bi2O3. Ion conductive compositions comprise at least 95 wt % ?-phase Bi2O3, and, at 25° C., the compositions are stable and have a conductivity of at least 10?7 S/cm. Related methods, electrochemical cells, and devices are also disclosed.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 30, 2021
    Assignee: CORNELL UNIVERSITY
    Inventors: Robert Bell, Marc Murphy, R. Bruce Van Dover, Michael O. Thompson, Peter A. Beaucage
  • Publication number: 20200223711
    Abstract: Provided is room temperature stable ?-phase Bi2O3. Ion conductive compositions comprise at least 95 wt % ?-phase Bi2O3, and, at 25° C., the compositions are stable and have a conductivity of at least 10?7 S/cm. Related methods, electrochemical cells, and devices are also disclosed.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Applicant: CORNELL UNIVERSITY
    Inventors: Robert BELL, Marc MURPHY, R. Bruce VAN DOVER, Michael O. THOMPSON, Peter A. BEAUCAGE
  • Publication number: 20170151584
    Abstract: A method providing direct access to porous three-dimensionally (3D) continuous polymer network structures and shapes by combining BCP-resol co-assembly with CO2 laser-induced transient heating. The CO2 laser source transiently heats the BCP-directed resol hybrid films to high temperatures at the beam position, inducing locally controlled resol thermopolymerization and BCP decomposition in ambient conditions. This enables shaping of BCP-directed porous resin structures with tunable 3D interconnected pores in a single process. Pore size can be varied from 10 nm to about 600 nm.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 1, 2017
    Inventors: Ulrich B. Wiesner, Michael O. Thompson, Kwan Wee Tan, Byungki Jung
  • Patent number: 8633787
    Abstract: A microelectromechanical structure (MEMS) device includes a secondary MEMS element displaceably coupled to a substrate. A primary MEMS element is displaceably coupled to the secondary MEMS element and has a resonant frequency substantially equal to the secondary MEMS element and has a much larger displacement than the secondary MEMS element.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: January 21, 2014
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Anil N. Netravali, Michael O. Thompson
  • Patent number: 8094351
    Abstract: Fibrous micro-composite materials are formed from micro fibers. The fibrous micro-composite materials are utilized as the basis for a new class of MEMS. In addition to simple fiber composites and microlaminates, fibrous hollow and/or solid braids, can be used in structures where motion and restoring forces result from deflections involving torsion, plate bending and tensioned string or membrane motion. In one embodiment, fibrous elements are formed using high strength, micron and smaller scale fibers, such as carbon/graphite fibers, carbon nanotubes, fibrous single or multi-ply graphene sheets, or other materials having similar structural configurations. Cantilever beams and torsional elements are formed from the micro-composite materials in some embodiments.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: January 10, 2012
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Michael O. Thompson, Anil N. Netrvali, S. Leigh Phoenix
  • Patent number: 7879741
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 1, 2011
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson, Boris Grek, David A. Markle
  • Publication number: 20100295414
    Abstract: A microelectromechanical structure (MEMS) device includes a secondary MEMS element displaceably coupled to a substrate. A primary MEMS element is displaceably coupled to the secondary MEMS element and has a resonant frequency substantially equal to the secondary MEMS element and has a much larger displacement than the secondary MEMS element.
    Type: Application
    Filed: September 21, 2007
    Publication date: November 25, 2010
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Anil N. Netravali, Michael O. Thompson
  • Patent number: 7731798
    Abstract: A chuck for supporting a wafer and maintaining a constant background temperature across the wafer during laser thermal processing (LTP) is disclosed. The chuck includes a heat sink and a thermal mass in the form of a heater module. The heater module is in thermal communication with the heat sink, but is physically separated therefrom by a thermal insulator layer. The thermal insulator maintains a substantially constant power loss at least equal to the maximum power delivered by the laser, less that lost by radiation and convection. A top plate is arranged atop the heater module, supports the wafer to be processed, and provides a contamination barrier. The heater module is coupled to a power supply that is adapted to provide varying amounts of power to the heater module to maintain the heater module at the constant background temperature even when the wafer experiences a spatially and temporally varying heat load from an LTP laser beam.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: June 8, 2010
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Igor Landau, David A. Markle, Somit Talwar, Michael O. Thompson, Ivelin A. Angelov, Senquan Zhou
  • Patent number: 7675698
    Abstract: Fibrous micro-composite materials are formed from micro fibers. The fibrous micro-composite materials are utilized as the basis for a new class of MEMS. In addition to simple fiber composites and microlaminates, fibrous hollow and/or solid braids, can be used in structures where motion and restoring forces result from deflections involving torsion, plate bending and tensioned string or membrane motion. In one embodiment, fibrous elements are formed using high strength, micron and smaller scale fibers, such as carbon/graphite fibers, carbon nanotubes, fibrous single or multi-ply graphene sheets, or other materials having similar structural configurations. Cantilever beams and torsional elements are formed from the micro-composite materials in some embodiments.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: March 9, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Michael O. Thompson, Anil N. Netrvali, S. Leigh Phoenix
  • Publication number: 20100025784
    Abstract: Fibrous micro-composite materials are formed from micro fibers. The fibrous micro-composite materials are utilized as the basis for a new class of MEMS. In addition to simple fiber composites and microlaminates, fibrous hollow and/or solid braids, can be used in structures where motion and restoring forces result from deflections involving torsion, plate bending and tensioned string or membrane motion. In one embodiment, fibrous elements are formed using high strength, micron and smaller scale fibers, such as carbon/graphite fibers, carbon nanotubes, fibrous single or multi-ply graphene sheets, or other materials having similar structural configurations. Cantilever beams and torsional elements are formed from the micro-composite materials in some embodiments.
    Type: Application
    Filed: October 9, 2009
    Publication date: February 4, 2010
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Michael O. Thompson, Anil N. Netrvali, S. Leigh Phoenix
  • Patent number: 7405854
    Abstract: Fibrous micro-composite materials are formed from micro fibers. The fibrous micro-composite materials are utilized as the basis for a new class of MEMS. In addition to simple fiber composites and microlaminates, fibrous hollow and/or solid braids, can be used in structures where motion and restoring forces result from deflections involving torsion, plate bending and tensioned string or membrane motion. In one embodiment, fibrous elements are formed using high strength, micron and smaller scale fibers, such as carbon/graphite fibers, carbon nanotubes, fibrous single or multi-ply graphene sheets, or other materials having similar structural configurations. Cantilever beams and torsional elements are formed from the micro-composite materials in some embodiments.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: July 29, 2008
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Shahyaan Desai, Michael O. Thompson, Anil N. Netrvali, S. Leigh Phoenix
  • Patent number: 7326877
    Abstract: Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: February 5, 2008
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Igor Landau, David A. Markle, Somit Talwar, Michael O. Thompson, Ivelin A. Angelov, Senquan Zhou
  • Patent number: 7176405
    Abstract: A heat shield (10) that facilitates thermally processing a substrate (22) with a radiation beam (150) is disclosed. The heat shield is in the form of a cooled plate adapted to allow the radiation beam to communicate with the substrate upper surface (20) over a radiation beam path (BP), either through an aperture or a transparent region. The heat shield has an operating position that forms a relatively small gap (170) between the lower surface (54) of the heat shield and the upper surface of the wafer. The gap is sized such that the formation of convection cells (200) is suppressed during substrate surface irradiation. If convection cells do form, they are kept out of the radiation beam path. This prevents the radiation beam from wandering from the desired radiation beam path, which in turn allows for uniform heating of the substrate during thermal processing.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: February 13, 2007
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Boris Grek, Michael O. Thompson
  • Patent number: 7157660
    Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: January 2, 2007
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson, David A. Markle
  • Patent number: 7148159
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: December 12, 2006
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson, Boris Grek, David A. Markle
  • Patent number: 7145104
    Abstract: An apparatus and method for uniformizing the temperature distribution across a semiconductor wafer during radiation annealing of process regions formed in the wafer is disclosed. The method includes forming a silicon layer atop the upper surface of the wafer and irradiating the layer with one or more pulses of radiation having wavelengths that are substantially absorbed by the silicon layer. The silicon layer acts to uniformly absorb the one or more radiation pulses and then transfers the heat from the absorbed radiation to the process regions across the wafer.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: December 5, 2006
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson
  • Patent number: 7020005
    Abstract: A method of operating a passive matrix addressable ferroelectric device having a voltage pulse protocol with a pre-disturb and post-disturb cycle before and after a disturb generating operation cycle respectively in order to minimize the effect of disturb voltage on non-addressed memory cells, when such voltages are generated thereto in the operation cycle when It is applied for either a write or read operation.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: March 28, 2006
    Assignee: Thin Film Electronics, ASA
    Inventors: Christer Karlsson, Per Hamberg, Staffan Björklid, Michael O. Thompson, Richard Womack
  • Patent number: 6950330
    Abstract: A method of driving a passive matrix display or memory array of cells comprising an electrically polarizable material exhibiting hysteresis, in particular a ferroelectric material, wherein the polarization state of individual cells can be switched by application of electric potentials or voltages to word and bit lines in the matrix or array.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: September 27, 2005
    Assignee: Thin Film Electronics ASA
    Inventors: Michael O. Thompson, Per-Erik Nordal, Hans Gude Gudesen, Johan Carlsson, Göran Gustafsson
  • Patent number: 6804138
    Abstract: In a method of driving a passive matrix display or memory array of cells comprising an electrically polarizable material exhibiting hysteresis, in particular a ferroelectric material, wherein the polarization state of individual cells can be switched by application of electric potentials or voltages to word and bit lines in the matrix or array, a potential on selected word and bit lines is controlled to approach or coincide with one of n predefined potential levels and the potentials on all word and bit lines are controlled in time according to a protocol such that word lines are sequentially latched to potentials selected among nWORD potentials, while the bit lines are either latched sequentially to potentials selected among nBIT potentials, or during a certain period of a timing sequence given by the protocol connected to circuitry for detecting charges flowing between a bit line or bit lines and cells connecting thereto.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: October 12, 2004
    Assignee: Thin Film Electronics ASA
    Inventors: Michael O. Thompson, Per-Erik Nordal, Hans Gude Gudesen, Johan Carlsson, Göran Gustafsson