Patents by Inventor Michael Olsen
Michael Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230098480Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.Type: ApplicationFiled: November 16, 2022Publication date: March 30, 2023Applicant: Oregon State UniversityInventors: Erzhuo Che, Michael Olsen
-
Patent number: 11567207Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.Type: GrantFiled: July 30, 2020Date of Patent: January 31, 2023Assignee: Oregon State UniversityInventors: Erzhuo Che, Michael Olsen
-
Publication number: 20210290288Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.Type: ApplicationFiled: June 10, 2021Publication date: September 23, 2021Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
-
Patent number: 11058474Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.Type: GrantFiled: August 28, 2017Date of Patent: July 13, 2021Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
-
Publication number: 20210048530Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.Type: ApplicationFiled: July 30, 2020Publication date: February 18, 2021Applicant: Oregon State UniversityInventors: Erzhuo Che, Michael Olsen
-
Publication number: 20210048512Abstract: An efficient approach to reconstruct the scanner trajectory of the mobile LIDAR system from the point cloud with minimal user parameters. The process of reconstructing trajectory comprises four steps: (1) spin rate estimation, (2) scan plane estimation, (3) scan origin estimation, and (4) global smoothing.Type: ApplicationFiled: July 30, 2020Publication date: February 18, 2021Applicant: Oregon State UniversityInventors: Erzhuo Che, Michael Olsen
-
Patent number: 10918434Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.Type: GrantFiled: May 3, 2018Date of Patent: February 16, 2021Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
-
Patent number: 10556780Abstract: A vehicle position detection and guidance system for use with an automotive service lift having a pair of runways onto which a vehicle is driven in order to be elevated. The system consists of a LiDAR sensor disposed to provide a field of view encompassing a volume of space extending upward from the upper surface of each lift runway, as well as the intervening region between the runways. The LiDAR sensor to observes at least the leading tread surfaces of two or more wheels on a vehicle approaching the service lift, and a volume of space below the vehicle. Output from the LiDAR sensor is conveyed to a processing system, which monitors the wheel positions relative to the runway surfaces, and provides output indicating steering corrections, obstructions, and a vehicle stopping point as the vehicle is driven onto the runways and/or the lift elevation changes.Type: GrantFiled: November 8, 2017Date of Patent: February 11, 2020Assignee: Hunter Engineering CompanyInventors: Matthew John Zecher, Michael Olsen, Nicholas J. Colarelli, III
-
Patent number: 10495540Abstract: A wheel balancer incorporates tire bead manipulating tools under control of a processing system to apply a clamping pressure to tire sidewall surfaces of a wheel assembly secured to a spindle shaft, facilitating the proper seating of tire beads to the wheel rim. The spindle shaft is operatively coupled to a drive motor and transmission system under control of the processing system, capable of operating in both a high speed, low torque regime and a low speed, high torque regime to rotate the wheel assembly during either an imbalance measurement procedure or a tire bead adjustment procedure. A load roller assembly, under control of the processing system, is disposed to selectively apply a radial force at a tire circumferential tread surface as the wheel assembly is rotated about the spindle axis, further facilitating the proper seating of the tire beads.Type: GrantFiled: October 25, 2017Date of Patent: December 3, 2019Assignee: Hunter Engineering CompanyInventors: Joel A. Clasquin, Michael Olsen, Charles Polster
-
Patent number: 10306708Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.Type: GrantFiled: November 28, 2017Date of Patent: May 28, 2019Assignee: APPLIED MATERIALS, INC.Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
-
Publication number: 20180250059Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.Type: ApplicationFiled: May 3, 2018Publication date: September 6, 2018Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
-
Patent number: 9987070Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.Type: GrantFiled: March 11, 2014Date of Patent: June 5, 2018Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
-
Publication number: 20180134529Abstract: A vehicle position detection and guidance system for use with an automotive service lift having a pair of runways onto which a vehicle is driven in order to be elevated. The system consists of a LiDAR sensor disposed to provide a field of view encompassing a volume of space extending upward from the upper surface of each lift runway, as well as the intervening region between the runways. The LiDAR sensor to observes at least the leading tread surfaces of two or more wheels on a vehicle approaching the service lift, and a volume of space below the vehicle. Output from the LiDAR sensor is conveyed to a processing system, which monitors the wheel positions relative to the runway surfaces, and provides output indicating steering corrections, obstructions, and a vehicle stopping point as the vehicle is driven onto the runways and/or the lift elevation changes.Type: ApplicationFiled: November 8, 2017Publication date: May 17, 2018Inventors: Matthew John Zecher, Michael Olsen, Nicholas J. Colarelli, III
-
Publication number: 20180120188Abstract: A wheel balancer incorporates tire bead manipulating tools under control of a processing system to apply a clamping pressure to tire sidewall surfaces of a wheel assembly secured to a spindle shaft, facilitating the proper seating of tire beads to the wheel rim. The spindle shaft is operatively coupled to a drive motor and transmission system under control of the processing system, capable of operating in both a high speed, low torque regime and a low speed, high torque regime to rotate the wheel assembly during either an imbalance measurement procedure or a tire bead adjustment procedure. A load roller assembly, under control of the processing system, is disposed to selectively apply a radial force at a tire circumferential tread surface as the wheel assembly is rotated about the spindle axis, further facilitating the proper seating of the tire beads.Type: ApplicationFiled: October 25, 2017Publication date: May 3, 2018Inventors: Joel A. Clasquin, Michael Olsen, Charles Polster
-
Publication number: 20180084610Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.Type: ApplicationFiled: November 28, 2017Publication date: March 22, 2018Inventors: Kin Pong LO, Paul BRILLHART, Ramachandran BALASUBRAMANIAN, Satheesh KUPPURAO, Daniel REDFIELD, Joseph M. RANISH, James Francis MACK, Kailash Kiran PATALAY, Michael OLSEN, Eddie FEIGEL, Richard HALPIN, Brett VETORINO
-
Publication number: 20170354454Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.Type: ApplicationFiled: August 28, 2017Publication date: December 14, 2017Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
-
Patent number: 9832816Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.Type: GrantFiled: April 22, 2014Date of Patent: November 28, 2017Assignee: APPLIED MATERIALS, INC.Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
-
Patent number: 9775663Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.Type: GrantFiled: March 11, 2014Date of Patent: October 3, 2017Assignee: St. Jude Medical, Cardiology Division, Inc.Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
-
Patent number: 9199831Abstract: A deflection resistant combination slip plate and turn plate assembly for support the steered wheels of a vehicle on a precision planar surface resistant to deflection and distortion. The slip plate and the turn plate are supported on an underlying surface by bearing assemblies, and establish a upper planar surface with the turn plate disposed in a cutout region of the slip plate. Each plate is configured for limited translational movement relative to the base plate surface on which it is supported, while the turn plate is further configured for rotational movement about a central axis. Translational movement of the plates is synchronized. Spacing between the slip plate and turn plate is minimized, and supporting means are provided to maintain the slip plate and turn plate in vertical alignment under load.Type: GrantFiled: March 7, 2013Date of Patent: December 1, 2015Assignee: Hunter Engineering CompanyInventors: Michael A. Olsen, William James Nelgner, Timothy A. Strege, Nicholas J. Colarelli, III
-
Publication number: 20140376898Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.Type: ApplicationFiled: April 22, 2014Publication date: December 25, 2014Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino