Patents by Inventor Michael Olsen

Michael Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250045715
    Abstract: Examples relate generally to a multi-tenant licensing and subscription management. More specifically, but not by way of limitation, embodiments relate to systems, methods, and media for enabling an interactive management platform and providing convenient user interfaces for subscription and license management. Examples provide highly-configurable features for incorporating enhanced technology in the form of convenient platform tools and applications for licensing and subscription management in a multi-tenant network.
    Type: Application
    Filed: July 31, 2023
    Publication date: February 6, 2025
    Inventors: Muthanna Nischal Ammatanda, Gaurav Jhaveri, Michael Olsen Craig, JR., Maria del Carmen Solanas Vanrell
  • Publication number: 20240358426
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 12053221
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: August 6, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 11965967
    Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: April 23, 2024
    Assignee: Oregon State University
    Inventors: Erzhuo Che, Michael Olsen
  • Patent number: 11885911
    Abstract: An efficient approach to reconstruct the scanner trajectory of the mobile LIDAR system from the point cloud with minimal user parameters. The process of reconstructing trajectory comprises four steps: (1) spin rate estimation, (2) scan plane estimation, (3) scan origin estimation, and (4) global smoothing.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 30, 2024
    Assignee: OREGON STATE UNIVERSITY
    Inventors: Erzhuo Che, Michael Olsen
  • Publication number: 20240017577
    Abstract: An axial clamping system for securing a wheel assembly onto a tire changer drive spindle. The clamping system consists of a shaft for engaging an axial bore of the drive spindle, configured with a set of ball bearings seated within radial bore arranged in a spiral configuration and which extend into a central bore of the shaft. Axial movement of a plunger within the central bore radially displaces the ball bearings to protrude outboard of the shaft outer surface, engaging a spiral channel within the drive spindle axial bore. Rotation of the clamping system within the drive spindle axial bore while the ball bearings engage the spiral channels, tightens a clamp nut against a wheel assembly seated on a flange of the drive spindle. Counter rotation and retraction of the plunger within the shaft releases the clamping forces, allowing for removal of the wheel assembly from the drive spindle.
    Type: Application
    Filed: June 27, 2023
    Publication date: January 18, 2024
    Inventors: Michael Olsen, Joshua Dierking
  • Publication number: 20230098480
    Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 30, 2023
    Applicant: Oregon State University
    Inventors: Erzhuo Che, Michael Olsen
  • Patent number: 11567207
    Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 31, 2023
    Assignee: Oregon State University
    Inventors: Erzhuo Che, Michael Olsen
  • Publication number: 20210290288
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 23, 2021
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Patent number: 11058474
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 13, 2021
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Vincent Froehlich, Michael Olsen, Sukanya Varadharajan, Catherine A. Pipenhagen
  • Publication number: 20210048530
    Abstract: A computer implemented scheme for a light detection and ranging (LIDAR) system where point cloud feature extraction and segmentation by efficiently is achieved by: (1) data structuring; (2) edge detection; and (3) region growing.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 18, 2021
    Applicant: Oregon State University
    Inventors: Erzhuo Che, Michael Olsen
  • Publication number: 20210048512
    Abstract: An efficient approach to reconstruct the scanner trajectory of the mobile LIDAR system from the point cloud with minimal user parameters. The process of reconstructing trajectory comprises four steps: (1) spin rate estimation, (2) scan plane estimation, (3) scan origin estimation, and (4) global smoothing.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 18, 2021
    Applicant: Oregon State University
    Inventors: Erzhuo Che, Michael Olsen
  • Patent number: 10918434
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: February 16, 2021
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Patent number: 10556780
    Abstract: A vehicle position detection and guidance system for use with an automotive service lift having a pair of runways onto which a vehicle is driven in order to be elevated. The system consists of a LiDAR sensor disposed to provide a field of view encompassing a volume of space extending upward from the upper surface of each lift runway, as well as the intervening region between the runways. The LiDAR sensor to observes at least the leading tread surfaces of two or more wheels on a vehicle approaching the service lift, and a volume of space below the vehicle. Output from the LiDAR sensor is conveyed to a processing system, which monitors the wheel positions relative to the runway surfaces, and provides output indicating steering corrections, obstructions, and a vehicle stopping point as the vehicle is driven onto the runways and/or the lift elevation changes.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: February 11, 2020
    Assignee: Hunter Engineering Company
    Inventors: Matthew John Zecher, Michael Olsen, Nicholas J. Colarelli, III
  • Patent number: 10495540
    Abstract: A wheel balancer incorporates tire bead manipulating tools under control of a processing system to apply a clamping pressure to tire sidewall surfaces of a wheel assembly secured to a spindle shaft, facilitating the proper seating of tire beads to the wheel rim. The spindle shaft is operatively coupled to a drive motor and transmission system under control of the processing system, capable of operating in both a high speed, low torque regime and a low speed, high torque regime to rotate the wheel assembly during either an imbalance measurement procedure or a tire bead adjustment procedure. A load roller assembly, under control of the processing system, is disposed to selectively apply a radial force at a tire circumferential tread surface as the wheel assembly is rotated about the spindle axis, further facilitating the proper seating of the tire beads.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: December 3, 2019
    Assignee: Hunter Engineering Company
    Inventors: Joel A. Clasquin, Michael Olsen, Charles Polster
  • Patent number: 10306708
    Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 28, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
  • Publication number: 20180250059
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 6, 2018
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Patent number: 9987070
    Abstract: Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 5, 2018
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John B. Blix, James C. Baker, Kevin K. Ennett, John Eric Hein, Joseph Allen Brotz, Joseph William Barnier, Raymond Victor Froehlich, Michael Olsen, Sukanya Varadharajan
  • Publication number: 20180134529
    Abstract: A vehicle position detection and guidance system for use with an automotive service lift having a pair of runways onto which a vehicle is driven in order to be elevated. The system consists of a LiDAR sensor disposed to provide a field of view encompassing a volume of space extending upward from the upper surface of each lift runway, as well as the intervening region between the runways. The LiDAR sensor to observes at least the leading tread surfaces of two or more wheels on a vehicle approaching the service lift, and a volume of space below the vehicle. Output from the LiDAR sensor is conveyed to a processing system, which monitors the wheel positions relative to the runway surfaces, and provides output indicating steering corrections, obstructions, and a vehicle stopping point as the vehicle is driven onto the runways and/or the lift elevation changes.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 17, 2018
    Inventors: Matthew John Zecher, Michael Olsen, Nicholas J. Colarelli, III
  • Patent number: D1069669
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: April 8, 2025
    Assignee: HUNTER ENGINEERING COMPANY
    Inventors: Alexander R. Greenhill, Michael Olsen, James Hudson