Patents by Inventor Michael P. Lanci

Michael P. Lanci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11787758
    Abstract: Provided are two-stage processes by which primary alcohols such as ethanol or 1-butanol are converted into distillate-range ethers and olefins utilizing Guerbet coupling followed by intermolecular dehydration. The ethers can be used, for example, as cetane-improvers in diesel fuel, while the olefins can be hydrogenated to afford paraffins.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: October 17, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Nathaniel M. Eagan, Michael P. Lanci, George W. Huber, Paolo Andres Cuello Penaloza, J. Scott Buchanan
  • Patent number: 11518725
    Abstract: Processes for producing alcohols from biomass are provided. The processes utilize supercritical methanol to depolymerize biomass with subsequent conversion to a mixture of alcohols. In particular the disclosure relates to continuous processes which produce high yields of alcohols through recycling gases and further employ dual reactor configurations which improve overall alcohol yields. Processes for producing higher ethers and olefins from the so-formed alcohols, through alcohol coupling and subsequent dehydration are also provided. The resulting distillate range ethers and olefins are useful as components in liquid fuels, such as diesel and jet fuel.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 6, 2022
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Peter H. Galebach, Michael P. Lanci, George W. Huber, Wenzhao Wu, Ashley M. Wittrig, Nathaniel M. Eagan, Paolo Andres Cuello Penaloza, J. Scott Buchanan
  • Patent number: 11236028
    Abstract: Processes are described for separating 3,4?- and 4,4?-dimethylbiphenyl from a mixture comprising at least 3,3?-, 3,4?- and 4,4?-dimethylbiphenyl. In the processes, the mixture is cooled to produce a crystallization product comprising at least of the 4,4?-dimethylbiphenyl from the feed mixture and a first mother liquor product. The first mother liquor product is distilled to produce a bottoms stream enriched in 4,4?-dimethylbiphenyl as compared with the first mother liquor product and an overhead stream deficient in 4,4?-dimethylbiphenyl as compared with the first mother liquor product. The overhead stream is then cooled to produce a second crystallization product comprising at least part of the 3,4?-dimethylbiphenyl from the overhead stream and a second mother liquor product.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: February 1, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Constantinos P. Bokis, Javier Guzman, Monica D. Lotz, Michael P. Lanci, Catherine M. Dorsi, Scott J. Weigel
  • Patent number: 11198660
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently 1, 2, or 3, is contacted with hydrogen in the presence of a hydrogenation catalyst to produce a hydrogenation reaction product comprising at least one methyl-substituted bicyclohexane compound, and the methyl-substituted bicyclohexane compound is then contacted with a dehydrogenation catalyst to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. Decaul, Michael P. Lanci, Wei Tang
  • Publication number: 20210363080
    Abstract: Processes for producing alcohols from biomass are provided. The processes utilize supercritical methanol to depolymerize biomass with subsequent conversion to a mixture of alcohols. In particular the disclosure relates to continuous processes which produce high yields of alcohols through recycling gases and further employ dual reactor configurations which improve overall alcohol yields. Processes for producing higher ethers and olefins from the so-formed alcohols, through alcohol coupling and subsequent dehydration are also provided. The resulting distillate range ethers and olefins are useful as components in liquid fuels, such as diesel and jet fuel.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Peter H. Galebach, Michael P. Lanci, George W. Huber, Wenzhao Wu, Ashley M. Wittrig, Nathaniel M. Eagan, Paolo Andres Cuello Penaloza, J. Scott Buchanan
  • Publication number: 20210363085
    Abstract: Provided are two-stage processes by which primary alcohols such as ethanol or 1-butanol are converted into distillate-range ethers and olefins utilizing Guerbet coupling followed by intermolecular dehydration. The ethers can be used, for example, as cetane-improvers in diesel fuel, while the olefins can be hydrogenated to afford paraffins.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Nathaniel M. Eagan, Michael P. Lanci, George W. Huber, Paolo Andres Cuello Penaloza, J. Scott Buchanan
  • Publication number: 20210053890
    Abstract: Processes are described for separating 3,4?- and 4,4?-dimethylbiphenyl from a mixture comprising at least 3,3?-, 3,4?- and 4,4?-dimethylbiphenyl. In the processes, the mixture is cooled to produce a crystallization product comprising at least of the 4,4?-dimethylbiphenyl from the feed mixture and a first mother liquor product. The first mother liquor product is distilled to produce a bottoms stream enriched in 4,4?-dimethylbiphenyl as compared with the first mother liquor product and an overhead stream deficient in 4,4?-dimethylbiphenyl as compared with the first mother liquor product. The overhead stream is then cooled to produce a second crystallization product comprising at least part of the 3,4?-dimethylbiphenyl from the overhead stream and a second mother liquor product.
    Type: Application
    Filed: January 8, 2019
    Publication date: February 25, 2021
    Inventors: Constantinos P. Bokis, Javier Gazman, Monica D. Lotz, Michael P. Lanci, Catherine M. Dorsi, Scott J. WEigel
  • Publication number: 20200361845
    Abstract: A process for selective oxidation of at least one dimethylbiphenyl compound to the corresponding biphenyldicarboxylic acid, where the dimethylbiphenyl compound is supplied to at least one reaction zone together with an acidic solvent, an oxidizing medium, and a catalyst comprising cobalt, manganese, and bromine. The dimethyl biphenyl compound and oxidizing medium are contacted with the catalyst in the at least one reaction zone at a temperature of 150 to 210° C. to oxidize the dimethylbiphenyl compound to the corresponding biphenyldicarboxylic acid. The supply of dimethylbiphenyl compound to the at least one reaction zone is then terminated, but the supply of oxidizing medium and catalyst is continued with the at least one reaction zone at a temperature of 150 to 210° C. A reaction product comprising at least 95 wt % of the biphenyldicarboxylic acid based on the total weight of oxidized dimethylbiphenyl compound is then recovered from the at least one reaction zone.
    Type: Application
    Filed: October 30, 2018
    Publication date: November 19, 2020
    Inventors: Etienne Mazoyer, Jarid M. Metz, Michael P. Lanci
  • Publication number: 20200325086
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently 1, 2, or 3, is contacted with hydrogen in the presence of a hydrogenation catalyst to produce a hydrogenation reaction product comprising at least one methyl-substituted bicyclohexane compound, and the methyl-substituted bicyclohexane compound is then contacted with a dehydrogenation catalyst to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound.
    Type: Application
    Filed: February 22, 2017
    Publication date: October 15, 2020
    Inventors: Jihad M. Dakka, Lorenzo C. Decaul, Michael P. Lanci, Wei Tang
  • Patent number: 10676413
    Abstract: In a process for producing one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4), a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream comprising one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4).
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10676412
    Abstract: In a process for separating dimethyl biphenyl isomers a mixture comprising one or more 3,3?, 3,4?- or 4,4?-dimethyl biphenyl isomers, one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3, or 4) and one or more further hydrocarbon components is contacted with a first adsorbent, thereby selectively adsorbing one or more of the dimethyl biphenyl isomers within the first adsorbent. A first raffinate stream containing less selectively adsorbed components is withdrawn from the first adsorbent and a first extract stream containing selectively adsorbed dimethyl biphenyl isomers is withdraw. The selectively adsorbed dimethyl biphenyl isomers comprise one or more of 3,3?-, 3,4?- or 4,4?-dimethyl biphenyl isomers and one or more of 2,X?-dimethyl biphenyl isomers (where X?=2, 3, or 4).
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10550050
    Abstract: In a process for separating one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising the isomers is contacted with a zeolite adsorbent which contains one or more metal cations in the +1 or +2 oxidation states. Separation processes for each of the 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers is provided.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Changyub Paek, Michael P. Lanci, Randall D. Partridge, Allen W. Burton, Carla S. Pereira, Benjamin A. McCool
  • Publication number: 20190300456
    Abstract: In a process for separating dimethyl biphenyl isomers a mixture comprising one or more 3,3?, 3,4?- or 4,4?-dimethyl biphenyl isomers, one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3, or 4) and one or more further hydrocarbon components is contacted with a first adsorbent, thereby selectively adsorbing one or more of the dimethyl biphenyl isomers within the first adsorbent. A first raffinate stream containing less selectively adsorbed components is withdrawn from the first adsorbent and a first extract stream containing selectively adsorbed dimethyl biphenyl isomers is withdraw. The selectively adsorbed dimethyl biphenyl isomers comprise one or more of 3,3?-, 3,4?- or 4,4?-dimethyl biphenyl isomers and one or more of 2,X?-dimethyl biphenyl isomers (where X?=2, 3, or 4).
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Publication number: 20190300457
    Abstract: In a process for producing one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4), a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream comprising one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4).
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10322991
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 18, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10322979
    Abstract: A process for separating dimethyl biphenyl (DMBP) isomers, including contacting a mixture of 3,3?-DMBP, 3,4?-DMBP and 4,4?-DMBP in a first solvent with a 12-member ring zeolite exchanged with potassium or barium, or combinations thereof, and adsorbing the 3,3?-DMBP onto the 12-member ring zeolite, such as by passing the mixture through at least one packed bed of the potassium and/or barium exchanged 12-member ring zeolite.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 18, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin A. McCool, Michael P. Lanci, Randall D. Partridge, Carla S. Pereira
  • Publication number: 20190144774
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Inventors: Michael P. LANCI, Stuart L. SOLED, Javier GUZMAN, Sabato MISEO, Thomas E. GREEN, Joseph E. BAUMGARTNER, Lei ZHANG, Christine E. KLIEWER, Lukasz KOZIOL, Kanmi MAO, Tracie OWENS, Gary P. SCHLEICHER
  • Patent number: 10287230
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 14, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10227539
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher
  • Patent number: 10227535
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher, Xiaochun Xu