Patents by Inventor Michael P. Stewart

Michael P. Stewart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932802
    Abstract: Various shaped abrasive particles are disclosed. Each shaped abrasive particle includes a body having at least one major surface and a side surface extending from the major surface.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 19, 2024
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Todd M. Cotter, Francois Wagner, Rene G. Demers, Richard J. Klok, Alexandra Marazano, Adam D. Lior, James A. Salvatore, Sujatha K. Iyengar, David F Louapre, Sidath S. Wijesooriya, Ronald Christopher Motta, Gary A. Guertin, Michael D. Kavanaugh, Doruk O. Yener, Jennifer H. Czerepinski, Jun Jia, Frederic Josseaux, Ralph Bauer, Frank J. Csillag, Yang Zhong, James P. Stewart, Mark P. Dombrowski, Sandhya Jayaraman Rukmani, Amandine Martin, Stephen E. Fox, Nilanjan Sarangi, Dean S. Matsumoto
  • Publication number: 20200142232
    Abstract: The present disclosure provides an electrically controllable optical device and a method for operating the same. The electrically controllable optical device comprises a multi-stable liquid crystal layer and a controller, wherein the electrically controllable optical device is switchable between a transparent state and a non-transparent state. The method for operating the electrically controllable optical device comprises applying a voltage to the multi-stable liquid crystal layer, controlling at least one of the amplitude, frequency and number of pulses of the voltage to switch the electrically controllable optical device between a transparent state and a non-transparent state, and removing the voltage.
    Type: Application
    Filed: July 14, 2017
    Publication date: May 7, 2020
    Inventors: Rainer DEMUTH, Sun GANG, Yu REN, Wenlei LI, Panhua ZHOU, Grant HAY, Paul KORFF, Madhavi KANTETI, Michael P. STEWART
  • Publication number: 20190170328
    Abstract: An adaptive backlight module and a method and system for producing an adaptive backlight module are described herein. The method of producing an adaptive backlight module includes: forming at least one enhancement film on a first substrate, forming a polarizer on the enhancement film, forming a diffuser by forming a liquid crystal layer between a first electrode on the first substrate and a second electrode on a second substrate, and connecting the diffuser to a light source.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 6, 2019
    Inventors: Michael P. STEWART, Hann-Ching CHAO, Daniel Paul FORSTER
  • Patent number: 10215368
    Abstract: An adaptive backlight module and a method and system for producing an adaptive backlight module are described herein. In one example, an adaptive backlight module includes a light source, a polarizer, at least one enhancement film disposed between the light source and the polarizer, and a diffuser disposed between the light source and the enhancement film. The diffuser includes a first electrode coupled to a first substrate and a second electrode coupled to a second substrate. A liquid crystal layer is disposed between the first electrode and the second electrode of the diffuser.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael P. Stewart, Hann-Ching Chao, Daniel Paul Forster
  • Publication number: 20170350576
    Abstract: An adaptive backlight module and a method and system for producing an adaptive backlight module are described herein. In one example, an adaptive backlight module includes a light source, a polarizer, at least one enhancement film disposed between the light source and the polarizer, and a diffuser disposed between the light source and the enhancement film. The diffuser includes a first electrode coupled to a first substrate and a second electrode coupled to a second substrate. A liquid crystal layer is disposed between the first electrode and the second electrode of the diffuser.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Michael P. Stewart, Hann-Ching Chao, Daniel Paul Forster
  • Patent number: 9040409
    Abstract: Embodiments of the present invention are directed to processes for making solar cells by simultaneously co-firing metal layers disposed both on a first and a second surface of a bifacial solar cell substrate. Embodiments of the invention may also provide a method forming a solar cell structure that utilize a reduced amount of a silver paste on a front surface of the solar cell substrate and a patterned aluminum metallization paste on a rear surface of the solar cell substrate to form a rear surface contact structure. Embodiments can be used to form passivated emitter and rear cells (PERC), passivated emitter rear locally diffused solar cells (PERL), passivated emitter, rear totally-diffused (PERT), “iPERC,” Crystalline Reduced-cost Aluminum Fire-Through (CRAFT), pCRAFT, nCRAFT or other high efficiency cell concepts.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 26, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prabhat Kumar, Michael P. Stewart, Kalyan Rapolu, Lin Zhang, Hari K. Ponnekanti
  • Patent number: 8859324
    Abstract: Embodiments of the present invention are directed to a process for making solar cells. Particularly, embodiments of the invention provide simultaneously co-firing (e.g., thermally processing) metal layers disposed both on a first and a second surface of a solar cell substrate to complete the metallization process in one step. By doing so, both the metal layers formed on the first and the second surfaces of the solar cell substrate are co-fired (e.g., simultaneously thermally processed), thereby eliminating manufacturing complexity, cycle time and cost to produce the solar cell device. Embodiments of the invention may also provide a method and solar cell structure that requires a reduced amount of a metallization paste on a rear surface of the substrate to form a rear surface contact structure and, thus, reduce the cost of the formed solar cell device.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 14, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Michael P. Stewart, Prabhat Kumar, Kapila P. Wijekoon, Lin Zhang, Hari K. Ponnekanti
  • Publication number: 20140261666
    Abstract: Embodiments of the present invention are directed to processes for making solar cells by simultaneously co-firing metal layers disposed both on a first and a second surface of a bifacial solar cell substrate. Embodiments of the invention may also provide a method forming a solar cell structure that utilize a reduced amount of a silver paste on a front surface of the solar cell substrate and a patterned aluminum metallization paste on a rear surface of the solar cell substrate to form a rear surface contact structure. Embodiments can be used to form passivated emitter and rear cells (PERC), passivated emitter rear locally diffused solar cells (PERL), passivated emitter, rear totally-diffused (PERT), “iPERC,” Crystalline Reduced-cost Aluminum Fire-Through (CRAFT), pCRAFT, nCRAFT or other high efficiency cell concepts.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Michael P. STEWART, Prabhat KUMAR
  • Publication number: 20140273338
    Abstract: Embodiments of the present invention are directed to processes for making solar cells by simultaneously co-firing metal layers disposed both on a first and a second surface of a bifacial solar cell substrate. Embodiments of the invention may also provide a method forming a solar cell structure that utilize a reduced amount of a silver paste on a front surface of the solar cell substrate and a patterned aluminum metallization paste on a rear surface of the solar cell substrate to form a rear surface contact structure. Embodiments can be used to form passivated emitter and rear cells (PERC), passivated emitter rear locally diffused solar cells (PERL), passivated emitter, rear totally-diffused (PERT), “iPERC,” Crystalline Reduced-cost Aluminum Fire-Through (CRAFT), pCRAFT, nCRAFT or other high efficiency cell concepts.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Prabhat KUMAR, Michael P. STEWART, Kalyan RAPOLU, Lin ZHANG, Hari K. PONNEKANTI
  • Publication number: 20140174532
    Abstract: Embodiments of the invention include a solar cell and methods of forming a solar cell. Specifically, the methods may be used to form a passivation/anti-reflection layer having desired functional and optical properties on a solar cell substrate. In one embodiment, a method of forming an anti-reflection layer on a solar cell substrate, the method includes flowing a first processing gas mixture into a processing chamber, wherein the first processing gas mixture includes at least a silicon containing gas and a nitrogen containing gas, wherein a ratio by flow volume of the silicon containing gas to the nitrogen containing gas supplied to the first processing gas mixture is controlled at between about 2:1 to about 1:5, applying a source RF power to the processing chamber in the presence of the first processing gas mixture, controlling the process pressure under 100 mTorr, and forming a silicon nitride containing layer on the substrate.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Michael P. Stewart, Damanjot Kaur Kochhar
  • Patent number: 8562935
    Abstract: The present invention is directed towards methods (processes) of providing large quantities of carbon nanotubes (CNTs) of defined diameter and chirality (i.e., precise populations). In such processes, CNT seeds of a pre-selected diameter and chirality are grown to many (e.g., hundreds) times their original length. This is optionally followed by cycling some of the newly grown material back as seed material for regrowth. Thus, the present invention provides for the large-scale production of precise populations of CNTs, the precise composition of such populations capable of being optimized for a particular application (e.g., hydrogen storage). The present invention is also directed to complexes of CNTs and transition metal catalyst precurors, such complexes typically being formed en route to forming CNT seeds.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 22, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Andrew R. Barron, James M. Tour, Howard K. Schmidt, W. Edward Billups, Christopher A. Dyke, Valerie C. Moore, Elizabeth Whitsitt, Robin E. Anderson, Ramon Colorado, Jr., Michael P. Stewart, Douglas C. Ogrin, Irene M. Marek
  • Publication number: 20130273262
    Abstract: Methods and apparatus for controlling film deposition using a linear plasma source are described herein. The apparatus include a showerhead having openings therein for flowing a gas therethrough, a conveyor to support one or more substrates thereon disposed adjacent to the showerhead, and a power source for ionizing the gas. The ionized gas can be a source gas used to deposit a material on the substrate. The deposition profile of the material on the substrate can be adjusted, for example, using a gas-shaping device included in the apparatus. Additionally or alternatively, the deposition profile may be adjusted by using an actuatable showerhead. The method includes exposing a substrate to an ionized gas to deposit a film on the substrate, wherein the ionized gas is influenced with a gas-shaping device to uniformly deposit the film on the substrate as the substrate is conveyed proximate to the showerhead.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Manoj Vellaikal, Michael S. Cox, Hemant P. Mungekar, Chikuang C. Wang, Lin Zhang, Hari K. Ponnekanti, Michael P. Stewart, Edward P. Hammond, IV, Alexander S. Polyak
  • Publication number: 20130183796
    Abstract: Embodiments of the present invention are directed to a process for making solar cells. Particularly, embodiments of the invention provide simultaneously co-firing (e.g., thermally processing) metal layers disposed both on a first and a second surface of a solar cell substrate to complete the metallization process in one step. By doing so, both the metal layers formed on the first and the second surfaces of the solar cell substrate are co-fired (e.g., simultaneously thermally processed), thereby eliminating manufacturing complexity, cycle time and cost to produce the solar cell device. Embodiments of the invention may also provide a method and solar cell structure that requires a reduced amount of a metallization paste on a rear surface of the substrate to form a rear surface contact structure and, thus, reduce the cost of the formed solar cell device.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Inventors: Michael P. Stewart, Prabhat Kumar, Kapila P. Wijekoon, Lin Zhang, Hari K. Ponnekanti
  • Publication number: 20130109132
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using a laser patterning process to form openings in a passivation layer on a surface of a solar cell substrate. In one embodiment, a method of forming an opening in a passivation layer on a solar cell substrate includes forming a passivation layer on a back surface of a substrate, the substrate having a first type of doping atom on the back surface of the substrate and a second type of doping atom on a front surface of the substrate, and providing a series of laser pulses to the passivation layer for between about 500 picoseconds and about 80 nanoseconds to form openings in the passivation layer.
    Type: Application
    Filed: October 9, 2012
    Publication date: May 2, 2013
    Inventors: Michael P. Stewart, Jeffrey L. Franklin
  • Patent number: 8372753
    Abstract: A method and apparatus for cleaning layers of solar cell substrates is disclosed. The substrate is exposed to a reactive gas that may comprise neutral radicals comprising nitrogen and fluorine, or that may comprise anhydrous HF and water, alcohol, or a mixture of water and alcohol. The reactive gas may further comprise a carrier gas. The reactive gas etches the solar cell substrate surface, removing oxygen and other impurities. When exposed to the neutral radicals, the substrate grows a thin film containing ammonium hexafluorosilicate, which is subsequently removed by heat treatment.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Virendra V S Rana, Michael P. Stewart
  • Patent number: 8362559
    Abstract: This invention is generally related to a method of making a molecule-surface interface comprising at least one surface comprising at least one material and at least one organic group wherein the organic group is adjoined to the surface and the method comprises contacting at least one organic group precursor with at least one surface wherein the organic group precursor is capable of reacting with the surface in a manner sufficient to adjoin the organic group and the surface. The present invention is directed to hybrid molecular electronic devices having a molecule-surface interface. Such hybrid molecular electronic devices may advantageously have either a top or bottom gate electrode for modifying a conductivity of the devices.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: January 29, 2013
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Michael P. Stewart, Jianli He, Harry F. Pang
  • Patent number: 8309446
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using a novel processing sequence to form a solar cell device. In one embodiment, the methods include forming a doping layer on a back surface of a substrate, heating the doping layer and substrate to cause the doping layer diffuse into the back surface of the substrate, texturing a front surface of the substrate after heating the doping layer and the substrate, forming a dielectric layer on the back surface of the substrate, removing portions of the dielectric layer from the back surface to from a plurality of exposed regions of the substrate, and depositing a metal layer over the back surface of the substrate, wherein the metal layer is in electrical communication with at least one of the plurality of exposed regions on the substrate, and at least one of the exposed regions has dopant atoms provided from the doping layer.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: November 13, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Yonghwa Chris Cha, Kapila P. Wijekoon, Hongbin Fang
  • Patent number: 8308858
    Abstract: Embodiments as described herein provide methods for depositing a material on a substrate during electroless deposition processes, as well as compositions of the electroless deposition solutions. In one embodiment, the substrate contains a contact aperture having an exposed silicon contact surface. In another embodiment, the substrate contains a contact aperture having an exposed silicide contact surface. The apertures are filled with a metal contact material by exposing the substrate to an electroless deposition process. The metal contact material may contain a cobalt material, a nickel material, or alloys thereof. Prior to filling the apertures, the substrate may be exposed to a variety of pretreatment processes, such as preclean processes and activations processes. A preclean process may remove organic residues, native oxides, and other contaminants during a wet clean process or a plasma etch process. Embodiments of the process also provide the deposition of additional layers, such as a capping layer.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: November 13, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Michael P. Stewart, Timothy W. Weidman, Arulkumar Shanmugasundram, David J. Eaglesham
  • Patent number: 8268728
    Abstract: The present invention generally provides a method of forming a high efficiency solar cell device by preparing a surface and/or forming at least a part of a high quality passivation layer on a silicon containing substrate. Embodiments of the present invention may be especially useful for preparing a surface of a p-type doped region formed on a silicon substrate so that a high quality passivation layer can be formed thereon. In one embodiment, the methods include exposing a surface of the solar cell substrate to a plasma to clean and modify the physical, chemical and/or electrical characteristics of the surface.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 18, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Michael P. Stewart, Lisong Zhou, Jen Shu, Li (Sherry) Xu
  • Publication number: 20120178200
    Abstract: Embodiments of the present invention are directed to an in-line system and process for forming a selective emitter solar cell. In one embodiment, a liquid dopant material is applied to a silicon substrate and dried to at least a semi-solid state. In another embodiment, a dopant material is deposited on a silicon substrate using a chemical vapor deposition process. A laser is then used to thermally excite regions of the substrate to drive the dopant atoms from the dopant material deep into the substrate to form highly doped regions. The substrate is then thermally processed to form a lightly doped emitter region and a shallow p-n junction in the remaining field region of the substrate. Conductive contacts are then deposited on the highly doped regions.
    Type: Application
    Filed: December 14, 2011
    Publication date: July 12, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventor: MICHAEL P. STEWART