Patents by Inventor Michael P Turski

Michael P Turski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10046793
    Abstract: Methods and systems for controlling a driving feature for an automated driving system are provided. In one embodiment, a method includes: receiving a first sensor signal from a first sensor; receiving a second sensor signal from a second sensor; selectively determining a driver intent based on at least one of the first sensor signal and the second sensor signal; and controlling the driving feature based on the driver intent.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 14, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles A. Green, Kenneth L. Rosol, Michael P. Turski, Jeremy A. Salinger
  • Publication number: 20150239500
    Abstract: Methods and systems for controlling a driving feature for an automated driving system are provided. In one embodiment, a method includes: receiving a first sensor signal from a first sensor; receiving a second sensor signal from a second sensor; selectively determining a driver intent based on at least one of the first sensor signal and the second sensor signal; and controlling the driving feature based on the driver intent.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 27, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: CHARLES A. GREEN, KENNETH L. ROSOL, MICHAEL P. TURSKI, JEREMY A. SALINGER
  • Patent number: 8798841
    Abstract: A system and method designed to improve sensor visibility for a host vehicle operating in an autonomous driving mode when one or more forward-looking sensors are being occluded or obstructed. According to an exemplary embodiment, when a forward-looking object detection sensor is being obstructed by a target vehicle located closely ahead of the host vehicle, the method determines if lateral movement by the host vehicle within its own lane is appropriate to improve sensor visibility around the target vehicle. If lateral movement is deemed appropriate, the method generates lateral movement commands that dictate the direction and distance of the lateral movement by the host vehicle. This may enable the object detection sensors to at least partially see around the obstructing target vehicle and improve the preview distance of the sensors.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: James N. Nickolaou, Joel Pazhayampallil, Michael P. Turski
  • Publication number: 20130231837
    Abstract: A method for regulating an electronic limited slip differential (eLSD) to apportion generated drive torque between first and second road wheels includes determining maximum torque capability of each wheel to identify more and less capable wheels. The method also includes determining a remaining portion of the drive torque by subtracting the maximum torque capability of the less capable wheel from the generated torque. The method additionally includes transferring to the more capable wheel a portion of the drive torque that is equal to the torque capability of the more capable wheel if the remaining portion is greater than the torque capability of the more capable wheel. Furthermore, the method includes transferring to the more capable wheel the remaining portion of the drive torque if the remaining portion is equal to or less than the torque capability of the more capable wheel. A vehicle employing the method is also disclosed.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James H. Holbrook, Michael P. Turski
  • Patent number: 8403812
    Abstract: An exemplary engine control system and method for controlling a vehicle engine during certain shifting maneuvers that involve a manual transmission, such as a ‘no-lift upshift’ where the driver does not release the accelerator pedal during manual shifting. The engine control method may be used to temporarily control the vehicle engine during a no-lift upshift maneuver so that the engine performs well without reaching excessively high engine speeds that could result in vehicle instability or damage. The engine control method described herein may be used with other performance driving maneuvers and techniques as well, such as a power shift maneuvers, etc.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: March 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael P. Turski, Kevin A. O'Dea
  • Patent number: 8290666
    Abstract: A system and method for controlling a vehicle engine during one or more performance driving events, such as a performance takeoff, shifting or cornering event. The engine control system may be used to maintain stability when the vehicle is being driven in a competitive or aggressive fashion by temporarily controlling the vehicle engine through the manipulation of engine torque, engine speed or some other means. If the engine control system receives competing command signals from different vehicle subsystems, then the system may arbitrate or otherwise manage the competing command signals so that different subsystems can function together properly. In one embodiment, the engine control system blends the commands signals from two or more subsystems.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael P. Turski, Kevin A. O'Dea
  • Patent number: 8200408
    Abstract: A method for active traction control of a vehicle can be performed to optimize corner exiting performance of a vehicle that is operating in a high performance or racing environment. The method estimates a real-time tire traction value during operation of the vehicle, computes a remaining tire traction value based upon a comparison of the estimated real-time tire traction value to a total available tire traction value, and calculates a traction system torque limit from the remaining tire traction value. The calculated torque limit can then be used to limit the actual traction system torque of the vehicle as needed in a real-time manner.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: June 12, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael P. Turski, Charles M. Tomlinson
  • Patent number: 8175785
    Abstract: A system and related operating method for performance launch control of a vehicle begins by receiving a user-selected driving condition setting that is indicative of road conditions. The method also collects real-time vehicle status data during operation of the vehicle, and derives a target wheel slip profile from the user-selected driving condition setting and the real-time vehicle status data. The actual propulsion system torque of the vehicle is limited using the target wheel slip profile, resulting in improved performance for standstill launches.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 8, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael P. Turski, Kevin A. O'Dea, Eric E. Krueger
  • Patent number: 8024098
    Abstract: A method of determining an engagement position of a clutch of a vehicle is provided. The clutch is operable by a clutch pedal adapted to move over a travel range. The method comprises determining a rate of change of position of the clutch pedal, locating a dwelling range of the clutch pedal, the dwelling range comprising a plurality of positions of the clutch pedal along the travel range during which the rate of change of position of the clutch pedal is less than a predetermined rate of change for a predetermined length of time, and recording the travel positions of the clutch pedal in the dwelling range.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 20, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin A. O'Dea, Michael P. Turski
  • Publication number: 20100217489
    Abstract: A system and method for controlling a vehicle engine during one or more performance driving events, such as a performance takeoff, shifting or cornering event. The engine control system may be used to maintain stability when the vehicle is being driven in a competitive or aggressive fashion by temporarily controlling the vehicle engine through the manipulation of engine torque, engine speed or some other means. If the engine control system receives competing command signals from different vehicle subsystems, then the system may arbitrate or otherwise manage the competing command signals so that different subsystems can function together properly. In one embodiment, the engine control system blends the commands signals from two or more subsystems.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael P. Turski, Kevin A. O'Dea
  • Publication number: 20100197458
    Abstract: An exemplary engine control system and method for controlling a vehicle engine during certain shifting maneuvers that involve a manual transmission, such as a ‘no-lift upshift’ where the driver does not release the accelerator pedal during manual shifting. The engine control method may be used to temporarily control the vehicle engine during a no-lift upshift maneuver so that the engine performs well without reaching excessively high engine speeds that could result in vehicle instability or damage. The engine control method described herein may be used with other performance driving maneuvers and techniques as well, such as a power shift maneuvers, etc.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael P. Turski, Kevin A. O'Dea
  • Publication number: 20100161194
    Abstract: A method for active traction control of a vehicle can be performed to optimize corner exiting performance of a vehicle that is operating in a high performance or racing environment. The method estimates a real-time tire traction value during operation of the vehicle, computes a remaining tire traction value based upon a comparison of the estimated real-time tire traction value to a total available tire traction value, and calculates a traction system torque limit from the remaining tire traction value. The calculated torque limit can then be used to limit the actual traction system torque of the vehicle as needed in a real-time manner.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: MICHAEL P. TURSKI, CHARLES M. TOMLINSON
  • Publication number: 20100161188
    Abstract: A system and related operating method for performance launch control of a vehicle begins by receiving a user-selected driving condition setting that is indicative of road conditions. The method also collects real-time vehicle status data during operation of the vehicle, and derives a target wheel slip profile from the user-selected driving condition setting and the real-time vehicle status data. The actual propulsion system torque of the vehicle is limited using the target wheel slip profile, resulting in improved performance for standstill launches.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: MICHAEL P. TURSKI, KEVIN A. O'DEA, ERIC E. KRUEGER
  • Publication number: 20100063699
    Abstract: A method of determining an engagement position of a clutch of a vehicle is provided. The clutch is operable by a clutch pedal adapted to move over a travel range. The method comprises determining a rate of change of position of the clutch pedal, locating a dwelling range of the clutch pedal, the dwelling range comprising a plurality of positions of the clutch pedal along the travel range during which the rate of change of position of the clutch pedal is less than a predetermined rate of change for a predetermined length of time, and recording the travel positions of the clutch pedal in the dwelling range.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: KEVIN A. O'DEA, MICHAEL P. TURSKI
  • Patent number: 7617036
    Abstract: A method and system, according to one embodiment of the present invention, provide a means to accurately determine the velocity of a vehicle. An initial estimation of the velocity of the vehicle is calculated based on rates of rotation of a plurality of wheels on the vehicles. If any of the wheels on the vehicle are in a brake control, or traction control, situation, the initial estimation is modified based on an acceleration of the vehicle to generate a modified estimation of the velocity of the vehicle.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: November 10, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Hualin Tan, Edmund S. Browalski, Ronald Paul, Christopher A. Kinser, Stephen R. Pastor, Michael P. Turski
  • Patent number: 7549108
    Abstract: Systems, methods and data structures are provided for representing robust data transmitted within a control system. The data structure includes at least two data fields identifying sub-modules and sub-modes of the control system, and optionally includes a third field for designating a primary operating mode of the control system and/or a fourth field representing a handshaking bit or value. The operating modes, sub-modes and sub-module designators are represented by values of the bits selected such that no single bit transition results in the selection of another valid operating state of the control system. As a result, single bit errors will not produce erroneous operating results. Similar concepts can be optionally applied to ensure that errors in contiguous sets of four, eight or any other number of bits do not produce valid states represented by the data structure.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: June 16, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Kerfegar K. Katrak, Michael P. Turski
  • Patent number: 7472006
    Abstract: A vehicle includes a plurality of sub-systems and corresponding controllers for effecting normal control thereover. The vehicle further includes a vehicle dynamics controller for providing high-priority sub-system commands for sub-system control to effect vehicle dynamics enhancements. The vehicle dynamics controller includes a plurality of independently decomposable and recomposable software components or layers and accessible inter-layer bus structure.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: December 30, 2008
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Michael P. Turski, Matthew M. Karaba, Youssef A. Ghoneim, Mark N. Howell, David M. Sidlosky
  • Publication number: 20080071452
    Abstract: A method and system, according to one embodiment of the present invention, provide a means to accurately determine the velocity of a vehicle. An initial estimation of the velocity of the vehicle is calculated based on rates of rotation of a plurality of wheels on the vehicles. If any of the wheels on the vehicle are in a brake control, or traction control, situation, the initial estimation is modified based on an acceleration of the vehicle to generate a modified estimation of the velocity of the vehicle.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 20, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Hualin Tan, Edmund S. Browalski, Ronald Paul, Christopher A. Kinser, Stephen R. Pastor, Michael P. Turski
  • Patent number: 6325469
    Abstract: A brake system control for use in a vehicle with four wheels comprising the steps of: determining a desired yaw rate (454); determining a yaw torque command responsive to the desired yaw rate (806); if the vehicle is in an anti-lock braking mode during driver commanded braking, applying the yaw torque command to only one of the four wheels to release brake pressure in said one of the four wheels (258-266, 274, 278, 280, 410-418); if the vehicle is in a positive acceleration traction control mode during driver commanded acceleration, applying the yaw torque command to only one of the four wheels to apply brake pressure in said one of the four wheels (258-266, 288-292, 410-418); and if the vehicle is not in the anti-lock braking mode or in the positive acceleration traction control mode, then: (i) determining whether a vehicle brake pedal is depressed (370); (ii) if the vehicle brake pedal is depressed, applying brake force to the vehicle wheels responsive to the depression of the brake pedal (374, 412, 418), w
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: December 4, 2001
    Assignees: General Motors Corporation, Delphi Technologies, Inc.
    Inventors: Douglass L Carson, Ronald Paul, Michael D Rizzo, Stephen R Pastor, Duane E Bassett, Hsien H Chen, Yuen-Kwok Chin, Youssef A Ghoneim, Hong X Hu, Alan J Lee, William C Lin, Michael P Turski