Patents by Inventor Michael P. Winterrowd

Michael P. Winterrowd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10812882
    Abstract: Novel tools and techniques for point-to-point network service provisioning and mesh network transitioning are provided. A system includes a fiber injection node, host mesh network radio, and a first node. The first node may comprise a remote wireless transceiver in communication with the host wireless transceiver, a first mesh network node transceiver configured to communicate with other mesh network node transceivers, a processor, and non-transitory computer readable media comprising instructions executable by the processor. The first node may be configured to establish a point-to-point wireless connection to the host wireless transceiver of the fiber injection node, and provision access to the service provider network to the first customer premises. The first node may further be configured to establish a mesh connection to a secondary mesh network node associated with a second customer premises, and provision access to the service provider network to the second customer premises.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 20, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael P. Winterrowd, Michael L. Elford, Stephen Opferman, Pasha G. Mohammed
  • Patent number: 10774948
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 15, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr., Thomas Schwengler
  • Publication number: 20200280773
    Abstract: Novel tools and techniques for point-to-point network service provisioning and mesh network transitioning are provided. A system includes a fiber injection node, host mesh network radio, and a first node. The first node may comprise a remote wireless transceiver in communication with the host wireless transceiver, a first mesh network node transceiver configured to communicate with other mesh network node transceivers, a processor, and non-transitory computer readable media comprising instructions executable by the processor. The first node may be configured to establish a point-to-point wireless connection to the host wireless transceiver of the fiber injection node, and provision access to the service provider network to the first customer premises. The first node may further be configured to establish a mesh connection to a secondary mesh network node associated with a second customer premises, and provision access to the service provider network to the second customer premises.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Applicant: CenturyLink Intellectual Property LLC
    Inventors: Michael P. Winterrowd, Michael L. Elford, Stephen Opferman, Pasha G. Mohammed
  • Publication number: 20200169796
    Abstract: Novel tools and techniques for point-to-point network service provisioning and mesh network transitioning are provided. A system includes a fiber injection node, host mesh network radio, and a first node. The first node may comprise a remote wireless transceiver in communication with the host wireless transceiver, a first mesh network node transceiver configured to communicate with other mesh network node transceivers, a processor, and non-transitory computer readable media comprising instructions executable by the processor. The first node may be configured to establish a point-to-point wireless connection to the host wireless transceiver of the fiber injection node, and provision access to the service provider network to the first customer premises. The first node may further be configured to establish a mesh connection to a secondary mesh network node associated with a second customer premises, and provision access to the service provider network to the second customer premises.
    Type: Application
    Filed: December 13, 2018
    Publication date: May 28, 2020
    Inventors: Michael P. Winterrowd, Michael L. Elford, Stephen Opferman, Pasha G. Mohammed
  • Patent number: 10659853
    Abstract: Novel tools and techniques for point-to-point network service provisioning and mesh network transitioning are provided. A system includes a fiber injection node, host mesh network radio, and a first node. The first node may comprise a remote wireless transceiver in communication with the host wireless transceiver, a first mesh network node transceiver configured to communicate with other mesh network node transceivers, a processor, and non-transitory computer readable media comprising instructions executable by the processor. The first node may be configured to establish a point-to-point wireless connection to the host wireless transceiver of the fiber injection node, and provision access to the service provider network to the first customer premises. The first node may further be configured to establish a mesh connection to a secondary mesh network node associated with a second customer premises, and provision access to the service provider network to the second customer premises.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 19, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael P. Winterrowd, Michael L. Elford, Stephen Opferman, Pasha G. Mohammed
  • Patent number: 10656363
    Abstract: Novel tools and techniques are provided for implementing installation of optical fiber, non-fiber lines, and/or power lines in a ground surface. In various embodiments, a foldable base might be placed in a channel in a ground surface. The foldable base might include a base portion, two side wall portions, at least two points of articulation, and two plug contacts. Each point of articulation allows each side wall portion to fold relative with the base portion, forming a cavity. One or more lines may be placed within the cavity. A plug, placed above the lines in the cavity, may engage with the two plug contacts to secure the plug to the foldable base. Capping material, placed in microchannel on a top surface of the plug, may flow beyond the microchannel and over any openings between the plug and the foldable base and between the foldable base and edges of the channel.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: May 19, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Michael P. Winterrowd, Patrick J. Sims
  • Patent number: 10613284
    Abstract: Novel tools and techniques are provided for implementing FTTx, which might include Fiber-to-the-Home (“FTTH”), Fiber-to-the-Building (“FTTB”), Fiber-to-the-Premises (“FTTP”), and/or the like. In some embodiments, a method might include routing an F1 line(s) from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot. From the FDH, an F2 line(s) might be routed, via any combination of apical conduit main slot(s), cross slot(s), far-side slot(s), missile bore(s), bore hole(s), and/or conduit(s) (collectively, “Apical Conduit Components”), to a network access point (“NAP”) servicing one or more customer premises. An F3 line(s) might be distributed, at the NAP and from the F2 line(s), to a network interface device (“NID”) or optical network terminal (“ONT”) at each customer premises, via any combination of the Apical Conduit Components, which include channels in at least portions of roadways.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 7, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Thomas C. Barnett, Jr., Michael P. Winterrowd, Thomas Schwengler
  • Patent number: 10578825
    Abstract: Novel tools and techniques are provided for implementing FTTx, which might include Fiber-to-the-Home (“FTTH”), Fiber-to-the-Premises (“FTTP”), and/or the like. A method might include routing an F1 line(s) from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot. From the FDH, an F2 line(s) might be routed, via any combination of various apical conduit components, to a network access point (“NAP”) servicing one or more customer premises. An F3 line(s) might be distributed, at the NAP and from the F2 line(s), to a network interface device (“NID”) or optical network terminal (“ONT”) at each customer premises, via any combination of the apical conduit components, which include channels in at least portions of roadways. In some embodiments, at least one wireless access point is disposed in each of one or more channels.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 3, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Thomas Schwengler, Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr.
  • Patent number: 10536759
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 14, 2020
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr., Thomas Schwengler
  • Publication number: 20190293895
    Abstract: Novel tools and techniques are provided for implementing FTTx, which might include Fiber-to-the-Home (“FTTH”), Fiber-to-the-Premises (“FTTP”), and/or the like. A method might include routing an F1 line(s) from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot. From the FDH, an F2 line(s) might be routed, via any combination of various apical conduit components, to a network access point (“NAP”) servicing one or more customer premises. An F3 line(s) might be distributed, at the NAP and from the F2 line(s), to a network interface device (“NID”) or optical network terminal (“ONT”) at each customer premises, via any combination of the apical conduit components, which include channels in at least portions of roadways. In some embodiments, at least one wireless access point is disposed in each of one or more channels.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 26, 2019
    Inventors: Thomas Schwengler, Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, JR.
  • Patent number: 10330882
    Abstract: Novel tools and techniques are provided for implementing FTTx, which might include Fiber-to-the-Home (“FTTH”), Fiber-to-the-Premises (“FTTP”), and/or the like. A method might include routing an F1 line(s) from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot. From the FDH, an F2 line(s) might be routed, via any combination of various apical conduit components, to a network access point (“NAP”) servicing one or more customer premises. An F3 line(s) might be distributed, at the NAP and from the F2 line(s), to a network interface device (“NID”) or optical network terminal (“ONT”) at each customer premises, via any combination of the apical conduit components, which include channels in at least portions of roadways. In some embodiments, at least one wireless access point is disposed in each of one or more channels.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 25, 2019
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Thomas Schwengler, Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr.
  • Publication number: 20190124425
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Application
    Filed: December 10, 2018
    Publication date: April 25, 2019
    Inventors: Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, JR., Thomas Schwengler
  • Publication number: 20190107683
    Abstract: Novel tools and techniques are provided for implementing installation of optical fiber, non-fiber lines, and/or power lines in a ground surface. In various embodiments, a foldable base might be placed in a channel in a ground surface. The foldable base might include a base portion, two side wall portions, at least two points of articulation, and two plug contacts. Each point of articulation allows each side wall portion to fold relative with the base portion, forming a cavity. One or more lines may be placed within the cavity. A plug, placed above the lines in the cavity, may engage with the two plug contacts to secure the plug to the foldable base. Capping material, placed in microchannel on a top surface of the plug, may flow beyond the microchannel and over any openings between the plug and the foldable base and between the foldable base and edges of the channel.
    Type: Application
    Filed: November 29, 2018
    Publication date: April 11, 2019
    Inventors: Michael L. Elford, Michael P. Winterrowd, Patrick J. Sims
  • Patent number: 10154325
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 11, 2018
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr., Thomas Schwengler
  • Patent number: 10146024
    Abstract: Novel tools and techniques are provided for implementing installation of optical fiber, non-fiber lines, and/or power lines in a ground surface. In various embodiments, a foldable base might be placed in a channel in a ground surface. The foldable base might include a base portion, two side wall portions, at least two points of articulation, and two plug contacts. Each point of articulation allows each side wall portion to fold relative with the base portion, forming a cavity. One or more lines may be placed within the cavity. A plug, placed above the lines in the cavity, may engage with the two plug contacts to secure the plug to the foldable base. Capping material, placed in microchannel on a top surface of the plug, may flow beyond the microchannel and over any openings between the plug and the foldable base and between the foldable base and edges of the channel.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 4, 2018
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Michael L. Elford, Michael P. Winterrowd, Patrick J. Sims
  • Publication number: 20180196216
    Abstract: Novel tools and techniques are provided for implementing installation of optical fiber, non-fiber lines, and/or power lines in a ground surface. In various embodiments, a foldable base might be placed in a channel in a ground surface. The foldable base might include a base portion, two side wall portions, at least two points of articulation, and two plug contacts. Each point of articulation allows each side wall portion to fold relative with the base portion, forming a cavity. One or more lines may be placed within the cavity. A plug, placed above the lines in the cavity, may engage with the two plug contacts to secure the plug to the foldable base. Capping material, placed in microchannel on a top surface of the plug, may flow beyond the microchannel and over any openings between the plug and the foldable base and between the foldable base and edges of the channel.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 12, 2018
    Inventors: Michael L. Elford, Michael P. Winterrowd, Patrick J. Sims
  • Patent number: 10015570
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 3, 2018
    Assignee: CenturyLink Intellectual Property LLC
    Inventors: Thomas C. Barnett, Jr., Michael L. Elford, Michael P. Winterrowd, Thomas Schwengler
  • Publication number: 20160109036
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Application
    Filed: December 17, 2015
    Publication date: April 21, 2016
    Inventors: Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, JR., Thomas Schwengler
  • Publication number: 20160109678
    Abstract: Novel tools and techniques are provided for implementing FTTx, which might include Fiber-to-the-Home (“FTTH”), Fiber-to-the-Premises (“FTTP”), and/or the like. A method might include routing an F1 line(s) from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot. From the FDH, an F2 line(s) might be routed, via any combination of various apical conduit components, to a network access point (“NAP”) servicing one or more customer premises. An F3 line(s) might be distributed, at the NAP and from the F2 line(s), to a network interface device (“NID”) or optical network terminal (“ONT”) at each customer premises, via any combination of the apical conduit components, which include channels in at least portions of roadways. In some embodiments, at least one wireless access point is disposed in each of one or more channels.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 21, 2016
    Inventors: Thomas Schwengler, Michael L. Elford, Michael P. Winterrowd, Thomas C. Barnett, Jr.
  • Publication number: 20160112779
    Abstract: Novel tools and techniques are provided for implementing point-to-point fiber insertion within a passive optical network (“PON”) communications system. The PON communications system, associated with a first service provider or a first service, might include an F1 line(s) routed from a central office or DSLAM to a fiber distribution hub (“FDH”) located within a block or neighborhood of customer premises, via at least an apical conduit source slot, an F2 line(s) routed via various apical conduit components to a network access point (“NAP”) servicing customer premises, and an F3 line(s) distributed, at the NAP and from the F2 Line(s), to a network interface device or optical network terminal at each customer premises via various apical conduit components (e.g., in roadway surfaces). Point-to-point fiber insertion of another F1 line(s), associated with a second service provider or a second service, at either the NAP or the FDH (or outside these devices).
    Type: Application
    Filed: December 17, 2015
    Publication date: April 21, 2016
    Inventors: Thomas C. Barnett, JR., Michael L. Elford, Michael P. Winterrowd, Thomas Schwengler