Patents by Inventor Michael Papantonakis

Michael Papantonakis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11465179
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 11, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R. Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Publication number: 20190360900
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 28, 2019
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R. Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Patent number: 10416049
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 17, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Patent number: 10302601
    Abstract: A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: May 28, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Robert Furstenberg, Viet K. Nguyen, Chris Kendziora, Michael Papantonakis, Todd H. Stievater
  • Patent number: 9816225
    Abstract: Disclosed herein is a composition having a plurality of particles of a filler material and crosslinking units having the formula —(SiR—CH2—CH2—CH2)—. The silicon atom in the crosslinking unit is directly or indirectly bound to the filler material. Each R is alkyl, alkenyl, phenyl, methyl, ethyl, allyl, halogen, chloro, or bromo. Also disclosed herein is a filler material having the silicon atom of a silacyclobutane group is directly or indirectly bound thereto. Also disclosed herein is a method of crosslinking silacyclobutane groups bound to a plurality of particles of a filler material. The silicon atom of the silacyclobutane group is directly or indirectly bound to the filler material. Also disclosed herein is a composition including a plurality of fibers of a polymer having reactive oxygen atoms and siloxane groups. Coordination bonds are formed between the oxygen atoms and the silicon atoms of the siloxane groups of separate fibers.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: November 14, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Duane L. Simonson, R. Andrew McGill, Bernadette A. Higgins, Michael Papantonakis
  • Publication number: 20170284928
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 5, 2017
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Publication number: 20170284976
    Abstract: A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
    Type: Application
    Filed: March 21, 2017
    Publication date: October 5, 2017
    Inventors: R. Andrew McGill, Robert Furstenberg, Viet K. Nguyen, Chris Kendziora, Michael Papantonakis, Todd H. Stievater
  • Patent number: 9599567
    Abstract: A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 21, 2017
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Robert Furstenberg, Viet K. Nguyen, Chris Kendziora, Michael Papantonakis, Todd H. Stievater
  • Publication number: 20160047085
    Abstract: Disclosed herein is a composition having a plurality of particles of a filler material and crosslinking units having the formula —(SiR—CH2—CH2—CH2)—. The silicon atom in the crosslinking unit is directly or indirectly bound to the filler material. Each R is alkyl, alkenyl, phenyl, methyl, ethyl, allyl, halogen, chloro, or bromo. Also disclosed herein is a filler material having the silicon atom of a silacyclobutane group is directly or indirectly bound thereto. Also disclosed herein is a method of crosslinking silacyclobutane groups bound to a plurality of particles of a filler material. The silicon atom of the silacyclobutane group is directly or indirectly bound to the filler material. Also disclosed herein is a composition including a plurality of fibers of a polymer having reactive oxygen atoms and siloxane groups. Coordination bonds are formed between the oxygen atoms and the silicon atoms of the siloxane groups of separate fibers.
    Type: Application
    Filed: October 27, 2015
    Publication date: February 18, 2016
    Inventors: Duane L. Simonson, R. Andrew McGill, Bernadette A. Higgins, Michael Papantonakis
  • Publication number: 20160011049
    Abstract: A non-destructive method for chemical imaging with ˜1 nm to 10 ?m spatial resolution (depending on the type of heat source) without sample preparation and in a non-contact manner. In one embodiment, a sample undergoes photo-thermal heating using an IR laser and the resulting increase in thermal emissions is measured with either an IR detector or a laser probe having a visible laser reflected from the sample. In another embodiment, the infrared laser is replaced with a focused electron or ion source while the thermal emission is collected in the same manner as with the infrared heating. The achievable spatial resolution of this embodiment is in the 1-50 nm range.
    Type: Application
    Filed: June 24, 2015
    Publication date: January 14, 2016
    Inventors: Robert Furstenberg, Chris Kendziora, Michael Papantonakis, R. Andrew McGill, Viet K. Nguyen, Graham K. Hubler
  • Patent number: 9169400
    Abstract: Disclosed herein is a composition having a plurality of particles of a filler material and crosslinking units having the formula —(SiR—CH2—CH2—CH2)—. The silicon atom in the crosslinking unit is directly or indirectly bound to the filler material. Each R is alkyl, alkenyl, phenyl, methyl, ethyl, allyl, halogen, chloro, or bromo. Also disclosed herein is a filler material having the silicon atom of a silacyclobutane group is directly or indirectly bound thereto. Also disclosed herein is a method of crosslinking silacyclobutane groups bound to a plurality of particles of a filler material. The silicon atom of the silacyclobutane group is directly or indirectly bound to the filler material. Also disclosed herein is a composition including a plurality of fibers of a polymer having reactive oxygen atoms and siloxane groups. Coordination bonds are formed between the oxygen atoms and the silicon atoms of the siloxane groups of separate fibers.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: October 27, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Duane L Simonson, R Andrew McGill, Bernadette A. Higgins, Michael Papantonakis
  • Publication number: 20140260535
    Abstract: A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: R. Andrew McGill, Robert Furstenberg, Viet K. Nguyen, Chris Kendziora, Michael Papantonakis, Todd H. Stievater
  • Patent number: 8421018
    Abstract: The present invention is directed to a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment provides a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte. Additionally, the present invention provides for a system for non-contact or stand off chemical detection.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: April 16, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S Horwitz, Graham K Hubler
  • Patent number: 8421017
    Abstract: A method for non-contact analyte detection by selectively exciting one or more analytes of interest using an IR source optionally operated to produce pulses of light and tuned to at least one specific absorption band without significantly decomposing organic analytes and determining if the analyte is present by comparing emitted photons with an IR detector signal collected one or more times before, during, or after, exciting the analyte. Another embodiment of the present invention provides a method for non-contact analyte detection by selectively exciting analytes of interest using one or more IR sources that are optionally operated to produce pulses of light and tuned to at least one specific wavelength without significantly decomposing organic analytes, wherein the analyte is excited sufficiently to increase the amount of analyte in the gas phase, and wherein the content of the gas is examined to detect the presence of the analyte.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: April 16, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: R Andrew McGill, Graham K Hubler, Michael Papantonakis, James S Horwitz, Chris Kendziora, Robert Furstenberg
  • Publication number: 20120247230
    Abstract: The present invention is directed to a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment provides a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte. Additionally, the present invention provides for a system for non-contact or stand off chemical detection.
    Type: Application
    Filed: June 5, 2012
    Publication date: October 4, 2012
    Inventors: R Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S. Horwitz, Graham K. Hubler
  • Patent number: 8222604
    Abstract: The present invention is directed to a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment provides a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte. Additionally, the present invention provides for a system for non-contact or stand off chemical detection.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 17, 2012
    Inventors: R Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S Horwitz, Graham K Hubler
  • Publication number: 20120091344
    Abstract: The present invention is directed to a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment provides a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte. Additionally, the present invention provides for a system for non-contact or stand off chemical detection.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Inventors: R. Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S. Horwitz, Graham K. Hubler
  • Patent number: 8101915
    Abstract: The present invention is directed to a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment provides a method for non-contact or stand off chemical detection by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte. Additionally, the present invention provides for a system for non-contact or stand off chemical detection.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: R Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S Horwitz, Graham K Hubler
  • Publication number: 20110271738
    Abstract: The present invention is generally directed to a method for non-contact analyte detection by selectively exciting one or more analytes of interest using an IR source optionally operated to produce pulses of light and tuned to at least one specific absorption band without significantly decomposing organic analytes and determining if the analyte is present by comparing emitted photons with an IR detector signal collected one or more times before, during, after, or any combination thereof exciting the analyte.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 10, 2011
    Inventors: R. Andrew McGill, Graham K. Hubler, Michael Papantonakis, James S. Horwitz, Chris Kendziora, Robert Furstenberg
  • Publication number: 20100044570
    Abstract: The present invention is generally directed to a method for non-contact or stand off chemical detection that may be eye-safe by selectively exciting one ore more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte and determining if the analyte is present by comparing emitted photons with an IR detector signal made before and during or shortly after exciting the analyte. Another embodiment of the present invention provides a method for non-contact or stand off chemical detection that may be eye-safe by selectively exciting one or more analytes of interest using an IR source tuned to at least one specific absorption band without significantly decomposing the analyte, wherein the analyte is excited sufficiently to generate a vapor plume, and wherein the plume is examined to detect the presence of the analyte.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 25, 2010
    Inventors: R. Andrew McGill, Chris Kendziora, Robert Furstenberg, Michael Papantonakis, James S. Horwitz, Graham K. Hubler