Patents by Inventor Michael Patrick Chudzik

Michael Patrick Chudzik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8227874
    Abstract: A semiconductor structure. The semiconductor structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a final gate dielectric region, (iv) a final gate electrode region, and (v) a first gate dielectric corner region. The final gate dielectric region (i) includes a first dielectric material, and (ii) is disposed between and in direct physical contact with the channel region and the final gate electrode region. The first gate dielectric corner region (i) includes a second dielectric material that is different from the first dielectric material, (ii) is disposed between and in direct physical contact with the first source/drain region and the final gate dielectric region, (iii) is not in direct physical contact with the final gate electrode region, and (iv) overlaps the final gate electrode region in a reference direction.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Michael Patrick Chudzik, Jeffrey Peter Gambino, Hongwen Yan
  • Patent number: 8012863
    Abstract: A transistor with a gate stack having a metal electrode and a method for forming the same. The method includes providing a structure which includes (a) a substrate, (b) a gate dielectric layer on the substrate, and (c) a gate layer on the gate dielectric layer. The gate layer includes an oxidized layer. The oxidized layer comprises an oxidized material. Then, the structure is exposed to a first plasma resulting in removal of oxygen atoms from molecules of the oxidized material.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Paul Daniel Kirsch
  • Publication number: 20100314697
    Abstract: A semiconductor structure. The semiconductor structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a final gate dielectric region, (iv) a final gate electrode region, and (v) a first gate dielectric corner region. The final gate dielectric region (i) includes a first dielectric material, and (ii) is disposed between and in direct physical contact with the channel region and the final gate electrode region. The first gate dielectric corner region (i) includes a second dielectric material that is different from the first dielectric material, (ii) is disposed between and in direct physical contact with the first source/drain region and the final gate dielectric region, (iii) is not in direct physical contact with the final gate electrode region, and (iv) overlaps the final gate electrode region in a reference direction.
    Type: Application
    Filed: August 24, 2010
    Publication date: December 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James William Adkisson, Michael Patrick Chudzik, Jeffrey Peter Gambino, Hongwen Yan
  • Patent number: 7790559
    Abstract: A semiconductor structure and a method for forming the same. The semiconductor structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a final gate dielectric region, (iv) a final gate electrode region, and (v) a first gate dielectric corner region. The final gate dielectric region (i) includes a first dielectric material, and (ii) is disposed between and in direct physical contact with the channel region and the final gate electrode region. The first gate dielectric corner region (i) includes a second dielectric material that is different from the first dielectric material, (ii) is disposed between and in direct physical contact with the first source/drain region and the final gate dielectric region, (iii) is not in direct physical contact with the final gate electrode region, and (iv) overlaps the final gate electrode region in a reference direction.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Michael Patrick Chudzik, Jeffrey Peter Gambino, Hongwen Yan
  • Publication number: 20090212376
    Abstract: A semiconductor structure and a method for forming the same. The semiconductor structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a final gate dielectric region, (iv) a final gate electrode region, and (v) a first gate dielectric corner region. The final gate dielectric region (i) includes a first dielectric material, and (ii) is disposed between and in direct physical contact with the channel region and the final gate electrode region. The first gate dielectric corner region (i) includes a second dielectric material that is different from the first dielectric material, (ii) is disposed between and in direct physical contact with the first source/drain region and the final gate dielectric region, (iii) is not in direct physical contact with the final gate electrode region, and (iv) overlaps the final gate electrode region in a reference direction.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Inventors: James William Adkisson, Michael Patrick Chudzik, Jeffrey Peter Gambino, Hongwen Yan
  • Patent number: 7160771
    Abstract: Gate oxides having different thicknesses are formed on a semiconductor substrate by forming a first gate oxide on the top surface of the substrate, forming a sacrificial hard mask over a selected area of the first gate oxide; and then forming a second gate oxide. A first poly layer may be formed on the first gate oxide, under the hard mask. After the hard mask is removed, a second poly layer may be formed over the second gate oxide and over the first poly layer. This enables the use of high-k dielectric materials, and the first gate oxide can be thinner than the second gate oxide.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: January 9, 2007
    Assignee: International Business Machines Corporation
    Inventors: Anthony I-Chih Chou, Michael Patrick Chudzik, Toshiharu Furukawa, Oleg Gluschenkov, Paul Daniel Kirsch, Byoung Hun Lee, Katsunori Onishi, Heemyoung Park, Kristen Colleen Scheer, Akihisa Sekiguchi
  • Patent number: 7030481
    Abstract: A carrier for a semiconductor component is provided having passive components integrated in its substrate. The passive components include decoupling components, such as capacitors and resistors. A set of connections is integrated to provide a close electrical proximity to the supported components.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: April 18, 2006
    Assignee: Internation Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Robert H. Dennard, Rama Divakaruni, Bruce Kenneth Furman, Rajarao Jammy, Chandrasekhar Narayan, Sampath Purushothaman, Joseph F. Shepard, Jr., Anna Wanda Topol
  • Patent number: 6962872
    Abstract: A carrier for a semiconductor component is provided having passive components integrated in its substrate. The passive components include decoupling components, such as capacitors and resistors. A set of connections is integrated to provide a close electrical proximity to the supported components.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Robert H. Dennard, Rama Divakaruni, Bruce Kenneth Furman, Rajarao Jammy, Chandrasekhar Narayan, Sampath Purushothaman, Joseph F. Shepard, Jr., Anna Wanda Topol
  • Patent number: 6905944
    Abstract: A method for fabricating a deep trench etched into a semiconductor substrate is provided by the present invention. The trench is divided into an upper portion and a lower portion and the method allows for the lower portion to be processed differently from the upper portion. After the trench is etched into the semiconductor substrate, a nitride layer is formed over a sidewall of the trench. A layer of oxide is then formed over the nitride layer. A filler material is then deposited and recessed to cover the oxide layer in the lower portion of the trench, followed by the removal of the oxide layer from the upper portion of the trench above the filler material. Once the oxide layer is removed from the upper portion of the trench, the filler material can also be removed, while allowing the oxide layer and the nitride layer to remain in the lower portion of the trench. Silicon is selectively deposited on the exposed nitride layer in the upper portion of the trench.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: June 14, 2005
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Michael Patrick Chudzik, Irene McStay, Helmut Horst Tews, Porshia Shane Wrschka
  • Publication number: 20040224478
    Abstract: A method for fabricating a deep trench etched into a semiconductor substrate is provided by the present invention. The trench is divided into an upper portion and a lower portion and the method allows for the lower portion to be processed differently from the upper portion. After the trench is etched into the semiconductor substrate, a nitride layer is formed over a sidewall of the trench. A layer of oxide is then formed over the nitride layer. A filler material is then deposited and recessed to cover the oxide layer in the lower portion of the trench, followed by the removal of the oxide layer from the upper portion of the trench above the filler material. Once the oxide layer is removed from the upper portion of the trench, the filler material can also be removed, while allowing the oxide layer and the nitride layer to remain in the lower portion of the trench. Silicon is selectively deposited on the exposed nitride layer in the upper portion of the trench.
    Type: Application
    Filed: May 8, 2003
    Publication date: November 11, 2004
    Applicants: International Business Machines Corporation, Infineon Technologies North America Corp
    Inventors: Michael Patrick Chudzik, Irene McStay, Helmut Horst Tews, Porshia Shane Wrschka
  • Publication number: 20040108587
    Abstract: A carrier for a semiconductor component is provided having passive components integrated in its substrate. The passive components include decoupling components, such as capacitors and resistors. A set of connections is integrated to provide a close electrical proximity to the supported components.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Inventors: Michael Patrick Chudzik, Robert H. Dennard, Rama Divakaruni, Bruce Kenneth Furman, Rajarao Jammy, Chandrasekhar Narayan, Sampath Purushothaman, Joseph F. Shepard, Anna Wanda Topol
  • Patent number: 6664161
    Abstract: The present invention is a method and structure for fabricating a trench capacitor within a semiconductor substrate having a buried plate electrode formed of metal silicide. A collar is formed in a trench etched into a substrate; a conformal metal film is deposited thereover, and is annealed to form a silicide that is self-aligned to the collar. Silicide will not be formed on the collar, pads and other areas where the silicon is not directly exposed and hence the metal layer can be removed from these areas by selective etching.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: December 16, 2003
    Assignee: International Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Jack Allan Mandelman, Carl John Radens, Rajarao Jammy, Kenneth T. Settlemyer, Jr., Padraic C. Shafer, Joseph F. Shepard, Jr.
  • Publication number: 20030207532
    Abstract: The present invention is a method and structure for fabricating a trench capacitor within a semiconductor substrate having a buried plate electrode formed of metal silicide. A collar is formed in a trench etched into a substrate; a conformal metal film is deposited thereover, and is annealed to form a silicide that is self-aligned to the collar. Silicide will not be formed on the collar, pads and other areas where the silicon is not directly exposed and hence the metal layer can be removed from these areas by selective etching.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Applicant: International Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Jack Allan Mandelman, Carl John Radens, Rajarao Jammy, Kenneth T. Settlemyer, Padraic C. Shafer, Joseph F. Shepard
  • Patent number: 6579759
    Abstract: In a vertical-transistor DRAM cell, the problem of making a reliable electrical connection between the node of the deep trench capacitor and the lower electrode of the vertical transistor is solved by; depositing a temporary insulator layer, forming a vertical spacer on the trench walls above the temporary insulator, then stripping the insulator to expose the substrate walls; diffusing dopant into the substrate walls to form a self-aligned extension of the buried strap; depositing the final gate insulator; and then forming the upper portion of the DRAM cell.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 17, 2003
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Michael Patrick Chudzik, Jochen Beintner, Ramachandra Divakaruni, Rajarao Jammy