Patents by Inventor Michael Patrick Kozar

Michael Patrick Kozar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10525635
    Abstract: A system for creating a feedstock line for additive manufacturing of an object comprises a prepreg-tow supply, a prepreg-tow separator, an optical-direction-modifier supply, a combiner, and at least one heater. The prepreg-tow supply dispenses a precursor prepreg tow, comprising elongate filaments and resin. The prepreg-tow separator separates the precursor prepreg tow into individual elongate filaments at least partially covered with the resin. The optical-direction-modifier supply dispenses optical direction modifiers to the elongate filaments. When electromagnetic radiation strikes the outer surface of the optical direction modifiers, at least a portion of the electromagnetic radiation departs the outer surface at an angle. The combiner combines the elongate filaments and the optical direction modifiers into a derivative prepreg tow. At least the one heater heats the resin to cause wet-out of the optical direction modifiers and the elongate filaments in the derivative prepreg tow by the resin.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 7, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10457033
    Abstract: Systems and methods for additively manufacturing composite parts are disclosed. Systems comprise at least a feedstock source and a feed mechanism. The feedstock source comprises a plurality of pre-consolidated tows, with each pre-consolidated tow comprising a fiber tow within a non-liquid binding matrix. In some systems, a tow combiner receives at least a subset of the plurality of pre-consolidated tows from the feedstock source and combines the subset of the plurality of pre-consolidated tows to define a macro tow. The feed mechanism moves the subset of the plurality of pre-consolidated tows from the feedstock source and into the tow combiner and moves the macro tow from the tow combiner. Methods according to the present disclosure comprise combining a plurality of pre-consolidated tows to define a macro tow, and dispensing the macro tow in three dimensions to define a composite part.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: October 29, 2019
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Nick Shadbeh Evans
  • Publication number: 20190105832
    Abstract: Additive manufacturing fiber composites comprise a bundle of elongate fibers and a matrix material that holds or encompasses the elongate fibers of the additive manufacturing fiber tow. The matrix material includes an energy-emissive dopant that emits a curing energy in response to receiving an activating energy. The curing energy effects curing of the solidifiable matrix material so that it solidifies to a rigid or semi-rigid matrix material. Methods of additively manufacturing an article include dispensing an additive manufacturing fiber tow, a solidifiable matrix material, and an energy-emissive dopant to form a solidifiable composite, and applying the activating energy to the energy-emissive dopant to activate the energy-emissive dopant to emit the curing energy. Systems to additively manufacturing an article may be configured to employ such additive manufacturing fiber composites and/or methods.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 11, 2019
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Publication number: 20190084286
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084243
    Abstract: A system (700) for additively manufacturing an object (136) comprises feedstock-line supply (702), delivery guide (704), and curing mechanism (706). The feedstock-line supply (702) dispenses a feedstock line (100) that comprises elongate fibers (104), a resin (124) that covers the elongate fibers (104), and at least one optical modifier (123) that is interspersed among the elongate filaments (104). The delivery guide (704) is movable relative to a surface (708), receives the feedstock line (100), and deposits it along a print path (705). The curing mechanism (706) is directs electromagnetic radiation (118) at the exterior surface (180) of the feedstock line (100) after it is deposited along the print path (705).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084251
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and optical direction modifiers (123). The resin (124) covers the elongate filaments (104). The optical direction modifiers (123) are covered by the resin (124) and are interspersed among the elongate filaments (104). Each of the optical direction modifiers (123) has an outer surface (184). Each of the optical direction modifiers (123) is configured such that when electromagnetic radiation (118) strikes the outer surface (184) from a first direction, at least a portion of the electromagnetic radiation (118) departs the outer surface (184) in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface of the feedstock line.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084223
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084242
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190077251
    Abstract: Various techniques are provided for an energy absorbing fluid bladder. In one example, the fluid bladder includes a bladder body and a perforated baffle structure. The perforated baffle structure can be disposed within the bladder body and configured to mitigate a pulse of fluid (e.g., fuel) moving within the bladder body before the pulse reaches the bladder body. Related methods are also disclosed.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Michael Patrick Kozar, Mark S. Wilenski
  • Publication number: 20190071187
    Abstract: Various techniques are provided for an expandable energy absorbing fluid bladder. In one example, the fluid bladder includes a primary portion and a secondary portion. The secondary portion can be configured to expand or increase in volume when the fluid bladder is subjected to a pulse greater than a threshold pulse. Expansion of the secondary portion can allow fluid or additional fluid to flow into the secondary portion and thus decrease a peak pulse and, thus, avoid rupture of the fluid bladder.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Michael Patrick Kozar, Mark S. Wilenski
  • Publication number: 20190047209
    Abstract: Additive manufacturing fiber tows comprise a bundle of elongate fibers. Bindments, which may include particles, elongated bindment segments, coating segments, and/or encircling bindments are interposed among the plural elongate fibers to provide interstitial regions among the plural elongate fibers and the bindments. Methods of additively manufacturing an article with a configuration comprise dispensing the additive manufacturing fiber tow with bindments in multiple successive courses in the configuration to additively manufacture the article. The methods may include fixing the bindments together to hold the article in the configuration with the interstitial regions among the plural elongate fibers and the bindments. A solidifiable matrix material may be applied to the article, including to the interstitial regions, and the solidifiable matrix material may be solidified to form a finished article.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 14, 2019
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Patent number: 10189237
    Abstract: A feedstock line comprises elongate filaments, a resin, and optical direction modifiers. The resin covers the elongate filaments. The optical direction modifiers are covered by the resin and are interspersed among the elongate filaments. Each of the optical direction modifiers has an outer surface. Each of the optical direction modifiers is configured such that when electromagnetic radiation strikes the outer surface from a first direction, at least a portion of the electromagnetic radiation departs the outer surface in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 29, 2019
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190001544
    Abstract: An apparatus (110) for shaping an extrudable material (140) comprises a sleeve (126), comprising a first sleeve end (186), a sleeve inlet (148) at the first sleeve end (186), a second sleeve end (188), opposite the first sleeve end (186), and a sleeve outlet (132) at the second sleeve end (188). The extrudable material (140) enters the sleeve (126) through the sleeve inlet (148) and exits the sleeve (126) through the sleeve outlet (132). The apparatus (110) further comprises an actuation mechanism (172), selectively operable to change at least one of a size or a shape of the sleeve outlet (132). The sleeve (126) is sufficiently flexible to enable the actuation mechanism (172) to change at least one of the size or the shape of the sleeve outlet (132). The sleeve (126) is insufficiently stretchable to enable the actuation mechanism (172) to stretch the sleeve (126).
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Inventors: Michael Patrick Kozar, Mark S. Wilenski, Samuel F. Harrison, Faraon Torres
  • Patent number: 10105893
    Abstract: A feedstock line comprises elongate filaments, a resin, and optical direction modifiers. The resin covers the elongate filaments. The optical direction modifiers are covered by the resin and are interspersed among the elongate filaments. Each of the optical direction modifiers has an outer surface. Each of the optical direction modifiers is configured such that when electromagnetic radiation strikes the outer surface from a first direction, at least a portion of the electromagnetic radiation departs the outer surface in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 23, 2018
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20180202080
    Abstract: Multi-part filaments for additive manufacturing comprise an elongate filament body. The elongate filament body comprises a first body part extending longitudinally along the elongate filament body, and a second body part extending longitudinally along the elongate filament body. The first body part comprises a first material, and the second body part comprises a second material. One of the first body part and the second body part is more rigid than the other of the first body part and the second body part and is sufficiently rigid to print self-supporting structures from the multi-part filament.
    Type: Application
    Filed: January 16, 2017
    Publication date: July 19, 2018
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Publication number: 20180154588
    Abstract: Systems for cure control of additive manufacturing comprise a build volume, a curing energy source, and a controller. The curing energy source is configured to actively deliver curing energy to discrete sections of a part as it is being additively manufactured. The controller is programmed to direct delivery of curing energy to impart desired cure properties to the discrete sections and/or according to predetermined cure profiles for the discrete sections. Methods of additively manufacturing a part comprise additively building a part from a feedstock material, and actively curing discrete sections of the part as it is being additively built to impart desired cure properties to the part and/or desired cure profiles to the part.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 7, 2018
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Nick Shadbeh Evans
  • Publication number: 20180141284
    Abstract: Systems for additive manufacturing comprise a delivery guide configured to dispense a curable material to additively manufacture a part in sequential layers of the curable material, and a source of curing energy configured to direct the curing energy to a discrete region of the curable material forward of or at a location where a subsequent layer of the curable material is dispensed from the delivery guide against a preceding layer of the curable material to cure together the subsequent layer and the preceding layer. Methods of additively manufacturing comprise dispensing a subsequent layer of a curable material against a preceding layer of the curable material, and concurrently with the dispensing, directing curing energy to a discrete region of the curable material to cure together the subsequent layer and the preceding layer.
    Type: Application
    Filed: November 18, 2016
    Publication date: May 24, 2018
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20180126667
    Abstract: Systems and methods for additively manufacturing composite parts are disclosed. Systems comprise at least a feedstock source and a feed mechanism. The feedstock source comprises a plurality of pre-consolidated tows, with each pre-consolidated tow comprising a fiber tow within a non-liquid binding matrix. In some systems, a tow combiner receives at least a subset of the plurality of pre-consolidated tows from the feedstock source and combines the subset of the plurality of pre-consolidated tows to define a macro tow. The feed mechanism moves the subset of the plurality of pre-consolidated tows from the feedstock source and into the tow combiner and moves the macro tow from the tow combiner. Methods according to the present disclosure comprise combining a plurality of pre-consolidated tows to define a macro tow, and dispensing the macro tow in three dimensions to define a composite part.
    Type: Application
    Filed: November 7, 2016
    Publication date: May 10, 2018
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Nick Shadbeh Evans
  • Publication number: 20180126671
    Abstract: Systems for thermal control of additive manufacturing comprise a build volume within which a part is additively manufactured; a heat source positioned relative to the build volume and configured to actively deliver heat to discrete sections of the part as it is being additively manufactured; and a controller operatively coupled to the heat source and configured to direct delivery of heat from the heat source to discrete sections of the part as it is being additively manufactured to impart desired physical properties to the part. Methods of additively manufacturing a part comprise additively building a part from a feedstock material; and actively heating discrete sections of the part as the part is being additively built to impart desired physical properties to the part.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Mark Stewart Wilenski, Faraón Torres, Nick Shadbeh Evans, Samuel F. Harrison, Michael Patrick Kozar
  • Patent number: 9597859
    Abstract: A self-sealing bladder may automatically seal a puncture wound formed in a bladder wall thereof, such as due to being perforated by a projectile. Self-sealing bladders may be used in containers, such as fuel tanks, in order to prevent loss of fuel or other fluid from the container. Self-sealing bladders may contain a sealant material contained within one or more localized reservoirs formed within the bladder wall, the sealant material being pressurized within the bladder wall such that a localized reduction in pressure due to a perforation in the bladder wall causes the sealant material to migrate to the perforated site, whereupon the sealant material hardens, thereby sealing the wound. The localized reservoirs may include one or more channels and/or connecting layers extending therefrom and in fluid communication therewith, to facilitate migration of the sealant material away from the localized reservoirs and towards the perforated portion of the bladder wall.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 21, 2017
    Assignee: The Boeing Company
    Inventors: James J. Childress, Mark Stewart Wilenski, Michael Patrick Kozar