Patents by Inventor Michael Philbrook

Michael Philbrook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11793749
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: October 24, 2023
    Assignee: Genzyme Corporation
    Inventors: Harvey Lieberman, Donglai Yang, C. Michael Philbrook, Michael Santos, Chris Ho
  • Publication number: 20220110861
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Application
    Filed: August 20, 2021
    Publication date: April 14, 2022
    Inventors: Harvey Lieberman, Donglai Yang, C. Michael Philbrook, Michael Santos, Chris Ho
  • Publication number: 20220017853
    Abstract: Provided herein are compositions and formulations that are useful for stabilizing one or more bacteria (e.g., through drying). Methods of stabilizing the one or more bacteria are also disclosed.
    Type: Application
    Filed: December 5, 2019
    Publication date: January 20, 2022
    Applicant: Seres Therapeutics, Inc.
    Inventors: Robert K. EVANS, Carl Michael PHILBROOK, Brian Michael SCHUSTER, Lisa MARSHALL
  • Patent number: 11110055
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 7, 2021
    Assignee: Genzyme Corporation
    Inventors: Harvey Lieberman, Donglai Yang, C. Michael Philbrook, Michael Santos, Chris Ho
  • Publication number: 20200048222
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Application
    Filed: January 4, 2019
    Publication date: February 13, 2020
    Inventors: Harvey Lieberman, Donglai Yang, C. Michael Philbrook, Michael Santos
  • Patent number: 10219998
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: March 5, 2019
    Assignee: Genzyme Corporation
    Inventors: Harvey Lieberman, Donglai Yang, C. Michael Philbrook, Michael Santos, Chris Ho
  • Publication number: 20180104180
    Abstract: A non-invasive injectable composition that contains type I collagen, an osteogenic growth factor (OSF), such as a bone morphogenetic protein and a reverse thermo-sensitive biodegradable polymer such as Poloxamer 407 in an aqueous vehicle. The formulation can be administered non-invasively, e.g., by injection, thus circumventing limitations of many currently marketed bone-inducing products. The injectable osteogenic formulation effectively induces bone formation at the desired locale. This injectable suspension could be used with bioresorbable bone mineral composites (e.g., Hydroxyapatite, Tri-calcium phosphate) and/or glycosaminolycans (e.g., Hyaluronic acid, Heparin sulfate) to mold as putty and/slab as bone graft substitute implants to induce new bone formation in fracture healing and spine fusion procedures.
    Type: Application
    Filed: May 23, 2017
    Publication date: April 19, 2018
    Inventors: Kuber T. Sampath, Michael Philbrook, Aviva Shiedlin, John M. McPherson
  • Publication number: 20180000728
    Abstract: Pharmaceutical formulations with a tropomyosin-related kinase inhibitor (“Trk inhibitor”) are disclosed. The pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine in microcrystalline suspension formulations in its monohydrate form, which shows improved characteristics over the anhydrate form, and in extended release formulations. The extended release pharmaceutical formulations comprise 3-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)-6-(1-methyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridin-2-amine-loaded microspheres.
    Type: Application
    Filed: December 17, 2015
    Publication date: January 4, 2018
    Applicant: GENZYME CORPORATION
    Inventors: Harvey LIEBERMAN, Donglai YANG, C. Michael PHILBROOK, Michael SANTOS, Chris HO
  • Publication number: 20170281641
    Abstract: Tropomyosin-related kinase inhibitors (Trk inhibitors) are small molecule compounds useful in the treatment of disease. Trk inhibitors can be used as pharmaceutical agents and in pharmaceutical compositions. Trk inhibitors are useful in the treatment of inflammatory diseases, autoimmune disease, defects of bone metabolism and/or cancer, and are particularly useful in the treatment of osteoarthritis (OA), pain, and pain associated with OA. Trk inhibitors are also useful for inhibiting tropomyosin-related kinase A (TrkA), tropomyosin-receptor kinase B (TrkB), tropomyosin-receptor kinase C (TrkC), and/or c-FMS (the cellular receptor for colony stimulating factor-1 (CSF-1)).
    Type: Application
    Filed: September 2, 2015
    Publication date: October 5, 2017
    Inventors: Kerry DONAHUE, C. Michael PHILBROOK, Dominick BLASIOLI, John L. KANE, Carl FLANNERY
  • Publication number: 20140271471
    Abstract: A non-invasive injectable composition that contains type I collagen, an osteogenic growth factor (OSF), such as a bone morphogenetic protein and a reverse thermo-sensitive biodegradable polymer such as Poloxamer 407 in an aqueous vehicle. The formulation can be administered non-invasively, e.g., by injection, thus circumventing limitations of many currently marketed bone-inducing products. The injectable osteogenic formulation effectively induces bone formation at the desired locale. This injectable suspension could be used with bioresorbable bone mineral composites (e.g., Hydroxyapatite, Tri-calcium phosphate) and/or glycosaminoglycans (e.g., Hyaluronic acid, Heparin sulfate) to mold as putty and/slab as bone graft substitute implants to induce new bone formation in fracture healing and spine fusion procedures.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Genzyme Corporation
    Inventors: Kuber T. Sampath, Michael Philbrook, Aviva Shiedlin, John M. McPherson
  • Publication number: 20130251683
    Abstract: The present invention relates to a heparin-derivatized collagen matrix comprising a fragment of heparin covalently linked to a collagen scaffold, wherein the fragment of heparin has molecular weight of less than about 15 kDa, and at least one heparin-binding growth factor (HBGF) or heparin-binding adeno-associated virus (HB-AAV) or a combination thereof and methods for promoting bone growth, bone repair, cartilage repair, bone development, neo-angiogensis, wound healing, tissue engraftment and muscle tissue regeneration and/or tissue augmentation comprising administering a heparin-derivatized collagen matrix that includes at least one heparin-binding growth factor or heparin-binding adeno-associated virus or a combination thereof.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 26, 2013
    Applicant: GENZYME CORPORATION
    Inventors: Michael Santos, Michael Philbrook, Michael A. DiMicco, Robert J. Miller
  • Publication number: 20120207847
    Abstract: This invention relates to compositions, methods of preparation thereof, and use thereof for cartilage repair.
    Type: Application
    Filed: August 10, 2010
    Publication date: August 16, 2012
    Applicant: GENZYME CORPORATION
    Inventors: Timothy J. Butler, Michael Philbrook, Peter K. Jarrett
  • Publication number: 20120138195
    Abstract: The invention relates to a method for manufacturing a product comprising an AlCu alloy comprising (weight per cent): Cu: 3.8-5.5 Mg: 0.2-0.8 Mn: 0.2-0.6 Ag 0.2-0.5 Si<0.15 Fe<0.20 Zn<0.25 Cr<0.05 Zr<0.10, Ti<0.15 others <0.05, remainder aluminium. In an embodiment the method comprises naturally aging the product forming in at least one process, such as stretch forming, drawing, flow spinning, and/or bending and artificial aging at a temperature from 280 to 340° F. (138 to 171° C.) for a duration from 6 to 36 hours. The method is particularly useful to make armor products.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 7, 2012
    Applicant: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC
    Inventors: Michael PHILBROOK, Michael M. NIEDZINSKI
  • Publication number: 20120088721
    Abstract: This invention relates to compositions, methods of preparation thereof, and use thereof for cartilage repair.
    Type: Application
    Filed: March 22, 2010
    Publication date: April 12, 2012
    Applicant: GENZYME CORPORATION
    Inventors: Aviva Shiedlin, Timothy J. Butler, Michael Philbrook, Peter K. Jarrett
  • Publication number: 20090192079
    Abstract: The present invention relates to a heparin-derivatized collagen matrix comprising a fragment of heparin covalently linked to a collagen scaffold, wherein the fragment of heparin has molecular weight of less than about 15 kDa, and at least one heparin-binding growth factor (HBGF) or heparin-binding adeno-associated virus (HB-AAV) or a combination thereof and methods for promoting bone growth, bone repair, cartilage repair, bone development, neo-angiogensis, wound healing, tissue engraftment and muscle tissue regeneration and/or tissue augmentation comprising administering a heparin-derivatized collagen matrix that includes at least one heparin-binding growth factor or heparin-binding adeno-associated virus or a combination thereof.
    Type: Application
    Filed: October 9, 2008
    Publication date: July 30, 2009
    Applicant: Genzyme Corporation
    Inventors: Michael Santos, Michael Philbrook, Michael A. DiMicco, Robert J. Miller
  • Patent number: 7250177
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: July 31, 2007
    Assignee: Genzyme Corporation
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 7238532
    Abstract: A method for measuring the concentration of isothiazolones in aqueous systems including removing sample interferences by lowering the pH of a sample collected from the aqueous system containing isothiazolones and filtering the sample, removing additional interferences by raising the pH and subsequent filtering, selectively adsorbing the isothiazolones in the sample desorbing the isothiazolones from the adsorbent, and comparing the absorbance of ultra-violet light of the desorbed sample to a standard of known concentration.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: July 3, 2007
    Inventor: David Michael Philbrook
  • Patent number: 7074424
    Abstract: Hyaluronic acid and polyalkylene glycol (PAG) based materials have been found to exhibit a synergistic interaction, in which the viscosity of the mixture is more than twice as high as the viscosity expected from the viscosity of the individual components. The mixture otherwise has similar properties to those of its constituents, and in particular will crosslink to form covalently crosslinked gels if the PEG carries crosslinkable groups. The viscous formulation adheres well to tissue, and has applications as a tissue sealant and in tissue coating, prevention of adhesions, cell immobilization, regeneration of cartilage, bone and other tissue, as well as in controlled delivery of hyaluronic acid to sites in the body. Related materials exhibit similar effects.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: July 11, 2006
    Assignee: Genzyme Corporation
    Inventors: Luis Z. Avila, Peter K. Jarrett, Hildegard M. Kramer, C. Michael Philbrook
  • Patent number: 7022343
    Abstract: Methods for the simple, reliable application and local controlled release of selected anti-arrhythmia drugs from a hydrogel applied to or polymerized on the tissues of the heart or its vessels, especially in conjunction with cardiac bypass or other cardiac surgery, have been developed. The anti-arrhythmia drugs are incorporated into hydrogels that biodegrade and adhere to the tissues to which the anti-arrhythmic drugs are to be delivered. The hydrogels may be formed in vitro or in vivo. In a preferred embodiment, the drugs are effective to lengthen atrial effective refractory period. A particularly preferred drug is amiodarone.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: April 4, 2006
    Assignee: Genzyme Corporation
    Inventors: C. Michael Philbrook, James W. Burns, Kevin C. Skinner, Robert J. Miller
  • Patent number: 6923986
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: August 2, 2005
    Assignee: Genzyme Corporation
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras