Patents by Inventor Michael Pinter

Michael Pinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087738
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Patent number: 9279178
    Abstract: Sputtering targets having a reduced burn-in time are disclosed that comprise: a) a heat-modified surface material having a substantially uniform crystallographic orientation, wherein at least part of the surface material was melted during heat-treatment, and b) a core material having an average grain size. Sputtering targets are also disclosed that include a heat-modified surface material having network of shallow trenches, alternating rounded peaks and valleys in the surface of the target or a combination thereof, wherein at least part of the surface material was melted during heat-treatment, and a core material having an average grain size. Methods of producing sputtering targets having reduced burn-in times comprises: a) providing a sputtering target comprising a sputtering surface having a sputter material and a crystal lattice, and b) heat-modifying the sputtering surface in order to melt at least part of the surface material and modify the crystal lattice.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 8, 2016
    Assignee: Honeywell International Inc.
    Inventors: Janine K. Kardokus, Michael Pinter, Michael D. Payton, Steven (Chi Tse) Wu, Jared Akins, Werner Hort
  • Publication number: 20090078570
    Abstract: Target/backing plate constructions and methods of forming target/backing plate constructions are disclosed herein. The targets and backing plates can be bonded to one another through an appropriate interlayer. The targets can comprise one or more of titanium, tantalum, titanium zirconium, hafnium, niobium, vanadium, tungsten, copper or a combination thereof. The interlayer can comprise one or more of silver, copper, nickel, tin, titanium and indium. Target/backing plate constructions of the present invention can have bond strengths of at least 20 ksi and an average grain size within the target of less than 80 microns.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 26, 2009
    Inventors: Wuwen Yi, Ravi Rastogi, Jaeyeon Kim, Brett Clark, Susan D. Storhers, Michael Pinter, Janine K. Kardokus
  • Publication number: 20080289958
    Abstract: Sputtering targets having a reduced burn-in time are disclosed that comprise: a) a heat-modified surface material having a substantially uniform crystallographic orientation, wherein at least part of the surface material was melted during heat-treatment, and b) a core material having an average grain size. Sputtering targets are also disclosed that include a heat-modified surface material having network of shallow trenches, alternating rounded peaks and valleys in the surface of the target or a combination thereof, wherein at least part of the surface material was melted during heat-treatment, and a core material having an average grain size. Methods of producing sputtering targets having reduced burn-in times comprises: a) providing a sputtering target comprising a sputtering surface having a sputter material and a crystal lattice, and b) heat-modifying the sputtering surface in order to melt at least part of the surface material and modify the crystal lattice.
    Type: Application
    Filed: April 25, 2008
    Publication date: November 27, 2008
    Inventors: Janine Kardokus, Michael Pinter, Michael Payton, Steven(Chi Tse) Wu, Jared Akins, Werner Hort
  • Publication number: 20070099332
    Abstract: A PVD component forming method includes identifying two or more solids having different compositions, homogeneously mixing particles of the solids using proportions which yield a bulk formula, consolidating the homogeneous particle mixture to obtain a rigid mass while applying pressure and using a temperature below the minimum temperature of melting or sublimation of the solids, and forming a PVD component including the mass. A chalcogenide PVD component includes a rigid mass containing a bonded homogeneous mixture of particles of two or more solids having different compositions, the mass having a microcomposite structure exhibiting a maximum feature size of 500 ?m or less, and one or more of the solids containing a compound of two or more bulk formula elements. An alternative PVD component exhibits a uniform composition with less than 10% difference in atomic compositions from feature to feature.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 3, 2007
    Inventors: Janine Kardokus, Michael Pinter, Ravi Rastogi, Diana Morales, Michael Payton
  • Publication number: 20060062686
    Abstract: A PVD target support member includes an alloy containing at least 90 wt % of a first metal and also containing a second metal and a third metal. The second metal increases electrical resistivity compared to an otherwise identical alloy lacking the second metal. The third metal increase tensile and/or yield strength compared to an otherwise identical alloy lacking the third metal. The alloy may exhibit a thermal stability during diffusion bonding to a target that meets or exceeds thermal stabilities of the otherwise identical alloy lacking the second metal and the otherwise identical alloy lacking the third metal. Another PVD target support member includes an alloy containing at least 90 wt % copper and also containing titanium and silver. The support member may be a backing plate.
    Type: Application
    Filed: September 17, 2004
    Publication date: March 23, 2006
    Inventors: Michael Pinter, Janine Kardokus, Wuwen Yi
  • Publication number: 20050279637
    Abstract: The invention includes a method of forming a target/backing plate assembly in which a backing plate construction is provided and a ruthenium-containing target is electrolytically deposited onto the backing plate construction. The backing plate construction can be in the form of a container shape having an interior region, and the ruthenium-containing target can be electrically deposited within the interior region of the container shape. The invention also includes target/backing plate constructions which have ruthenium-containing targets. The invention also includes a method of electrolytically processing ruthenium. A cathode is provided and an electrically conductive sacrificial material is provided over the cathode. A ruthenium-containing material is electrolytically deposited on the sacrificial material. The sacrificial material and the ruthenium-containing material are removed from the cathode, and then the ruthenium-containing material is separated from the sacrificial material.
    Type: Application
    Filed: June 22, 2004
    Publication date: December 22, 2005
    Inventors: Michael Pinter, Janine Kardokus
  • Publication number: 20050192391
    Abstract: A coating for weatherstrips, windshield wipers, door seals, trunk seals, sunroof seals, windshield seals and the like. The coating comprises a water-based formula that provides high abrasion resistance and, optimally, also provides excellent weathering resistance. The abrasion resistance property is achieved via a combination of boron nitride and a high molecular weight silicone resin. Flexibility and weathering resistance are achieved via the addition of an acrylic/polyurethane/fluoropolymer resin binder blend and high UV-stabilizers and absorbers. Also provided is a method of manufacturing such coatings that comprises the steps of pre-dispersing the boron nitride in water and then combining the pre-dispersed boron nitride with the silicone resin and other ingredients.
    Type: Application
    Filed: February 20, 2004
    Publication date: September 1, 2005
    Inventors: Michael Pinter, Marufur Rahim
  • Publication number: 20050000821
    Abstract: The invention includes anodes for electroplating, baths. The anodes have a purity of at least 99.9%, and comprise one or more of silver, gold, nickel, chromium, copper or various solder compositions. The anodes can, for example, comprise at least 99.995% copper/phosphorus alloy, by weight; or at least 99.995% nickel and sulfur, by weight. The invention also includes methods of electroplating, materials over semiconductor substrates.
    Type: Application
    Filed: November 16, 2001
    Publication date: January 6, 2005
    Inventors: Tamara White, Nancy Dean, Martin Weiser, Michael Pinter