Patents by Inventor Michael Pleskach

Michael Pleskach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080141529
    Abstract: An electro-fluidic interconnection. The interconnection includes a body (200) formed of a ceramic material. The body (200) is provided with an aperture (206) having a profile suitable for receiving an interconnecting conduit (400). The interconnecting conduit (400) can be formed of the same type of ceramic material as the body (200). The conduit (400) is defined by an outer shell (403) with a hollow bore (402) for transporting a fluid. A mating portion (404) of the conduit has an exterior profile that matches the profile of the aperture. Moreover, the mating portion (404) of the conduit (400) can be compression fitted within the aperture (206). Conductive traces (406, 208) on the conduit and the body can be electrically connected to complete the electro-fluidic interconnection.
    Type: Application
    Filed: August 7, 2007
    Publication date: June 19, 2008
    Applicant: HARRIS CORPORATION
    Inventors: Michael Pleskach, Paul Koeneman, Carol Gamlen, Steven R. Snyder
  • Patent number: 7285000
    Abstract: An electro-fluidic interconnection. The interconnection includes a body (200) formed of a ceramic material. The body (200) is provided with an aperture (206) having a profile suitable for receiving an interconnecting conduit (400). The interconnecting conduit (400) can be formed of the same type of ceramic material as the body (200). The conduit (400) is defined by an outer shell (403) with a hollow bore (402) for transporting a fluid. A mating portion (404) of the conduit has an exterior profile that matches the profile of the aperture. Moreover, the mating portion (404) of the conduit (400) can be compression fitted within the aperture (206). Conductive traces (406, 208) on the conduit and the body can be electrically connected to complete the electro-fluidic interconnection.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: October 23, 2007
    Assignee: Harris Corporation
    Inventors: Michael Pleskach, Paul Koeneman, Carol Gamlen, Steven R. Snyder
  • Publication number: 20070053158
    Abstract: An electro-fluidic interconnection. The interconnection includes a body (200) formed of a ceramic material. The body (200) is provided with an aperture (206) having a profile suitable for receiving an interconnecting conduit (400). The interconnecting conduit (400) can be formed of the same type of ceramic material as the body (200). The conduit (400) is defined by an outer shell (403) with a hollow bore (402) for transporting a fluid. A mating portion (404) of the conduit has an exterior profile that matches the profile of the aperture. Moreover, the mating portion (404) of the conduit (400) can be compression fitted within the aperture (206). Conductive traces (406, 208) on the conduit and the body can be electrically connected to complete the electro-fluidic interconnection.
    Type: Application
    Filed: August 12, 2005
    Publication date: March 8, 2007
    Applicant: HARRIS CORPORATION
    Inventors: Michael Pleskach, Paul Koeneman, Carol Gamlen, Steven Snyder
  • Publication number: 20060176139
    Abstract: A toroidal inductor, including a substrate (100), a toroidal core region (434) defined within the substrate, and a toroidal coil including a first plurality of turns formed about the toroidal core region and a second plurality of turns formed about the toroidal core region. The second plurality of turns can define a cross sectional area (440) greater than a cross sectional area (442) defined by the first plurality of turns. The substrate and the toroidal coil can be formed in a co-firing process to form an integral substrate structure with the toroidal coil at least partially embedded therein. The first and second plurality of turns can be disposed in alternating succession. The toroidal core region can be formed of a substrate material having a permeability greater than at least one other portion of the substrate.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 10, 2006
    Applicant: Harris Corporation
    Inventors: Michael Pleskach, Andrew Thomson, Bayardo Payan, Terry Provo
  • Publication number: 20050229385
    Abstract: A method for making an embedded toroidal inductor (118) includes forming in a ceramic substrate (100) a first plurality of conductive vias (102) radially spaced a first distance from a central axis (101) so as to define an inner circumference. A second plurality of conductive vias (104) is formed radially spaced a second distance about the central axis so as to define an outer circumference. A first plurality of conductive traces (110) forming an electrical connection between substantially adjacent ones of the first and second plurality of conductive vias is formed on a first surface (106) of the ceramic substrate. Further, a second plurality of conductive traces (110) forming an electrical connection between circumferentially offset ones of the first and second plurality of conductive vias is formed on a second surface of the ceramic substrate opposed from the first surface to define a three dimensional toroidal coil.
    Type: Application
    Filed: June 1, 2005
    Publication date: October 20, 2005
    Applicant: Harris Corporation
    Inventors: Michael Pleskach, Andrew Thomson
  • Publication number: 20050212642
    Abstract: Method for forming a transformer (118) in a ceramic substrate. The method can include the steps of forming at least one conductive coil (119a, 119b) comprising a plurality of turns about an unfired ceramic toroidal core region (120a, 120b) defined within an unfired ceramic substrate (100). The method can also include the step of co-firing the unfired ceramic toroidal core region (120a, 120b), the unfired ceramic substrate (100), and the conductive coil (119a, 119b) to form an integral ceramic substrate structure with the conductive coil at least partially embedded therein.
    Type: Application
    Filed: March 26, 2004
    Publication date: September 29, 2005
    Applicant: Harris Corporation
    Inventors: Michael Pleskach, Andrew Thomson
  • Publication number: 20050156698
    Abstract: A method for making an embedded toroidal inductor (118) includes forming in a ceramic substrate (100) a first plurality of conductive vias (102) radially spaced a first distance from a central axis (101) so as to define an inner circumference. A second plurality of conductive vias (104) is formed radially spaced a second distance about the central axis so as to define an outer circumference. A first plurality of conductive traces (110) forming an electrical connection between substantially adjacent ones of the first and second plurality of conductive vias is formed on a first surface (106) of the ceramic substrate. Further, a second plurality of conductive traces (110) forming an electrical connection between circumferentially offset ones of the first and second plurality of conductive vias is formed on a second surface of the ceramic substrate opposed from the first surface to define a three dimensional toroidal coil.
    Type: Application
    Filed: January 24, 2005
    Publication date: July 21, 2005
    Applicant: Harris Corporation
    Inventors: Michael Pleskach, Andrew Thomson
  • Publication number: 20050068726
    Abstract: An electro-fluidic device may include a substrate having at least one substrate fluid passageway therein, and at least one substrate electrical conductor carried by the substrate. Moreover, an external interface may be spaced from the substrate and include at least one interface electrical conductor. The electro-fluidic device may also include at least one electro-fluidic interconnect extending between the substrate and the external interface. More particularly, the at least one electro-fluidic interconnect may include an interconnect body having at least one interconnect fluid passageway extending therethrough and connected to the at least one substrate fluid passageway, and at least one interconnect electrical conductor carried by the interconnect body. The at least one interconnect electrical conductor may connect the at least one substrate electrical conductor and the at least one interface electrical connector.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Applicant: Harris Corporation
    Inventors: Michael Pleskach, Paul Koeneman, Brian Smith, Charles Newton, Carol Gamlen
  • Publication number: 20050052268
    Abstract: A method for making an embedded toroidal inductor (118) includes forming in a ceramic substrate (100) a first plurality of conductive vias (102) radially spaced a first distance from a central axis (101) so as to define an inner circumference. A second plurality of conductive vias (104) is formed radially spaced a second distance about the central axis so as to define an outer circumference. A first plurality of conductive traces (110) forming an electrical connection between substantially adjacent ones of the first and second plurality of conductive vias is formed on a first surface (106) of the ceramic substrate. Further, a second plurality of conductive traces (110) forming an electrical connection between circumferentially offset ones of the first and second plurality of conductive vias is formed on a second surface of the ceramic substrate opposed from the first surface to define a three dimensional toroidal coil.
    Type: Application
    Filed: September 5, 2003
    Publication date: March 10, 2005
    Inventors: Michael Pleskach, Andrew Thomson