Patents by Inventor Michael Quilici

Michael Quilici has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190342965
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicant: Osram Sylvania Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Publication number: 20190342964
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicant: Osram Sylvania Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10412802
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 10, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Publication number: 20190208603
    Abstract: An orientation-aware luminaire and a method of operating an orientation-aware luminaire are disclosed herein. The luminaire includes a light source, at least one orientation sensor configured to provide orientation output representative of the position of the luminaire relative to a subject, and a controller communicatively coupled the light source. The controller provides control signals to provide a light output for illuminating the subject in response to the orientation output of the orientation sensor. The color or intensity of the light output may be determined from a lighting scene.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Applicant: OSRAM SYLVANIA Inc.
    Inventor: Michael A. Quilici
  • Publication number: 20190117812
    Abstract: Various implementations disclosed herein include a method for aiding disinfection of a room. The method may include collecting, by one or more sensors in a disinfection system, activity data in the room. A computing device or output device may identify one or more hot spots from the activity data, in which the one or more hot spots indicate areas in the room for cleaning, and generate a contamination map containing the one or more hot spots. The output device may output the contamination map to an output device for viewing by a user.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 25, 2019
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Joseph Olsen, Michael A. Quilici
  • Patent number: 10237951
    Abstract: A luminaire having an electronically adjustable light beam distribution to provide upward illumination creating color gradients on a ceiling. The color gradients may be in patterns that mimic color gradients of a sky, including, for example, color gradients that mimic sunrise, sunset, sun at different times of day, a rainy day, clouds, the sun, moon, etc. The color gradients may change over time and/or may include one or more objects, e.g. clouds, the sun, moon, etc. and/or may move and/or change over time to create a dynamic sky on the ceiling. Multiple luminaires may be controlled by a system controller to produce coordinated color gradients across the light distribution areas of the multiple luminaires.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 19, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael A. Quilici, Holger Sacher, Seung Cheol Ryu
  • Patent number: 10225910
    Abstract: Techniques are disclosed to operate a luminaire so as to reduce glare experience by an occupant within an area illuminated by a luminaire. The luminaire includes individually operated light sources. An image capture device is deployed for capturing an image of an area. Operatively coupled to the luminaire and the image capture device is a computing system. The computing is configured to reduce glare by adjusting a light intensity of a light source of the luminaire. These adjustments are based on, for example, a position of an occupant within the area and a direction in which the occupant is facing relative to the luminaire, and/or a position of an indirect glare source.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 5, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Lori Brock, Michael Quilici
  • Publication number: 20190022263
    Abstract: A luminaire for disinfecting a target surface includes a disinfecting light source, a non-disinfecting light source, a beam angle adjustor, a motion sensor, and a distance sensor. The radiance of the disinfecting light is calculated based on detected distance to a target surface and beam angle, and may be selected to achieve a predetermined irradiance of the target surface. If no motion is detected by the motion sensor then the disinfecting light source is set to ON and the non-disinfecting light source is set to OFF. If motion is detected and a beam intercept is not detected by the distance sensor then the disinfecting light source is set to DIM and the non-disinfecting light source is set to ON. If motion is detected and a beam intercept is detected then the disinfecting light source is set to OFF and the non-disinfecting light source is set to ON.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 24, 2019
    Applicant: OSRAM SYLVANIA Inc.
    Inventor: Michael A. Quilici
  • Patent number: 10161610
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: December 25, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20180324929
    Abstract: Techniques are disclosed to operate a luminaire so as to reduce glare experience by an occupant within an area illuminated by a luminaire. The luminaire includes individually operated light sources. An image capture device is deployed for capturing an image of an area. Operatively coupled to the luminaire and the image capture device is a computing system. The computing is configured to reduce glare by adjusting a light intensity of a light source of the luminaire. These adjustments are based on, for example, a position of an occupant within the area and a direction in which the occupant is facing relative to the luminaire, and/or a position of an indirect glare source.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 8, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Lori Brock, Michael Quilici
  • Publication number: 20180255616
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 6, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Publication number: 20180238518
    Abstract: A reflector assembly for a solid-state luminaire is disclosed. The disclosed reflector assembly may be configured, in accordance with some embodiments, to be disposed over a given printed circuit board (PCB) of a host luminaire such that emissions of emitters populated over that PCB are reflected out of the luminaire via the reflector assembly. In some embodiments, the reflector assembly may be formed from one or more reflective members, which may be generally bar-shaped or cup-shaped, or other example configurations. In some other embodiments, the reflector assembly may be formed from a bulk body having one or more reflective cavities formed therein. The particular configuration of a given reflective member or reflective cavity, as the case may be, of the reflector assembly, as well as the particular arrangement thereof for a host luminaire, may be customized as desired for a given target application or end-use.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Qiong Huang, Michael Quilici, Seung Cheo Ryu
  • Patent number: 10015868
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 3, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Patent number: 9976725
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In some embodiments, the disclosed luminaire includes a plurality of solid-state lamps mounted on one or more surfaces of a housing. The lamps can be electronically controlled individually and/or in conjunction with one another, for example, to provide highly adjustable light emissions from the luminaire (e.g., pixelated control over light distribution). In some cases, a given solid-state lamp may include tunable electro-optic componentry to provide it with its own electronically adjustable light beam. One or more heat sinks optionally may be mounted on the housing to assist with heat dissipation for the solid-state lamps. The luminaire can be configured to be mounted or as a free-standing lighting device, in accordance with some embodiments. In some embodiments, the aperture through which the lamps provide illumination is smaller than the distribution area of the solid-state lamps of the luminaire.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 22, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Seung Cheol Ryu, Michael Quilici
  • Publication number: 20180073686
    Abstract: A lighting device including one or more solid state light sources having an electronically adjustable light beam distribution is disclosed. The lighting device may be a lamp configured to include one or more light source modules, each including one or more solid-state emitters populated over a printed circuit board (PCB). The lamp further may include one or more optics configured to modify the output of its one or more light source modules. For a given module, the one or more emitters thereof may be arranged, for example, in a matrix, cellular array, concentric array, or other arrangement, as desired for a given target application or end-use. A given emitter may be addressable individually, in one or more groupings, or both. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Application
    Filed: September 14, 2016
    Publication date: March 15, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Michael A. Quilici, Seung Cheol Ryu
  • Patent number: 9801260
    Abstract: Techniques and user interfaces (UIs) are disclosed for controlling a solid-state luminaire having an electronically adjustable light beam distribution. The disclosed UI may be configured, in accordance with some embodiments, to provide a user with the ability to control, by wireless and/or wired connection, the light distribution of an associated solid-state luminaire in a given space. The UI may be hosted by any computing device, portable or otherwise, and may be used to control any given light distribution capability provided by a paired luminaire. In accordance with some embodiments, the user may provide such control without need to know details about the luminaire, such as the quantity of solid-state lamps, or their individual addresses, or the address of the fixture itself. In some cases, the disclosed techniques may involve acquiring spatial information of the space that hosts the luminaire and/or providing user-selected distribution of light within that space.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: October 24, 2017
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Mervyn Anthony, Michael Quilici, Seung Cheol Ryu, Jeff Holt
  • Patent number: 9587805
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In some embodiments, the disclosed luminaire includes a plurality of solid-state lamps mounted on one or more surfaces of a housing. The lamps can be electronically controlled individually and/or in conjunction with one another, for example, to provide highly adjustable light emissions from the luminaire (e.g., pixelated control over light distribution). In some cases, a given solid-state lamp may include tunable electro-optic componentry to provide it with its own electronically adjustable light beam. One or more heat sinks optionally may be mounted on the housing to assist with heat dissipation for the solid-state lamps. The luminaire can be configured to be mounted or as a free-standing lighting device, in accordance with some embodiments. In some embodiments, the aperture through which the lamps provide illumination is smaller than the distribution area of the solid-state lamps of the luminaire.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 7, 2017
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Seung Cheol Ryu, Michael Quilici
  • Patent number: 9374854
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: June 21, 2016
    Assignee: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20160123541
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20160123564
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock