Patents by Inventor Michael R. Elgersma

Michael R. Elgersma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8818722
    Abstract: A method includes generating current coarse edge count representation based on current fine grid representation of current section, correlating current edge quantity values of current coarse pixels with historical edge quantity values of historical coarse pixels of historical coarse edge count representation of environment, and identifying first subsection of historical coarse edge count representation with highest correlation to current coarse edge count representation. Each current coarse pixel in current coarse edge count representation represents current fine pixels from current fine grid representation. Fine grid representation of current section of environment is based on data from range and attitude sensor. Each current coarse pixel within current coarse edge count representation includes current edge quantity value that represents quantity of current fine pixels represented by current coarse pixel that include edge.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Yunqian Ma
  • Patent number: 8582086
    Abstract: A range measurement device is disclosed. The device comprises a flash laser radar configured to produce a first laser pulse at a first time. The device receives, at a second time, reflections of the first laser pulse from at least one object within a 360 degree field of view. The device further comprises a timing electronics module, an image sensor in communication with the timing electronics module, a mirror element coupled between the image sensor and the laser radar, and a lens. The mirror element includes a first reflector configured to disperse the reflections of the first laser pulse within at least a portion of the 360 degree field of view and a second reflector configured to collect returning reflections of the first laser pulse from the at least one object into the image sensor. The lens is configured to focus the returning reflections onto the image sensor.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Honeywell International Inc.
    Inventors: Randolph G. Hartman, Michael R. Elgersma
  • Publication number: 20130131984
    Abstract: A method includes generating current coarse edge count representation based on current fine grid representation of current section, correlating current edge quantity values of current coarse pixels with historical edge quantity values of historical coarse pixels of historical coarse edge count representation of environment, and identifying first subsection of historical coarse edge count representation with highest correlation to current coarse edge count representation. Each current coarse pixel in current coarse edge count representation represents current fine pixels from current fine grid representation. Fine grid representation of current section of environment is based on data from range and attitude sensor. Each current coarse pixel within current coarse edge count representation includes current edge quantity value that represents quantity of current fine pixels represented by current coarse pixel that include edge.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael R. Elgersma, Yunqian Ma
  • Patent number: 8344303
    Abstract: A method to determine roll angle, pitch angle, and heading angle of a spinning projectile during a flight of the spinning projectile is provided. The method includes providing a magnetic unit vector in an inertial frame of the projectile at a projectile launch location prior to launch of the projectile; determining a magnetic unit vector in a body frame and in an inertial frame of the spinning projectile during the flight of the spinning projectile; determining a velocity unit vector in the body frame and in the inertial frame of the spinning projectile during the flight of the spinning projectile; and calculating the roll angle, the pitch angle, and the heading angle of the spinning projectile during the flight of the spinning projectile, regardless of the spin rate of the projectile. The roll angle and the pitch angle of the spinning projectile form an attitude of the spinning projectile.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 1, 2013
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Vibhor L. Bageshwar
  • Patent number: 8306676
    Abstract: Systems and methods for differential altitude estimation utilizing spatial interpolation of pressure sensor data are provided. In one embodiment, a method for mobile navigation comprises: measuring a horizontal location of a mobile navigation unit to generate two-dimensional horizontal coordinate data; measuring a barometric pressure at the mobile navigation unit with a sensor to obtain local pressure data; processing information representative of pressure data derived from a network of a plurality reference stations to obtain a correction factor; performing a calculation using the two-dimensional horizontal coordinate data, the local pressure data, and the correction factor to calculate an altitude coordinate; and determining an altitude of the mobile navigation unit from the altitude coordinate.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 6, 2012
    Assignee: Honeywell International Inc.
    Inventors: Ryan Ingvalson, Michael R. Elgersma, Wayne A. Soehren
  • Publication number: 20120265373
    Abstract: Systems and methods for differential altitude estimation utilizing spatial interpolation of pressure sensor data are provided. In one embodiment, a method for mobile navigation comprises: measuring a horizontal location of a mobile navigation unit to generate two-dimensional horizontal coordinate data; measuring a barometric pressure at the mobile navigation unit with a sensor to obtain local pressure data; processing information representative of pressure data derived from a network of a plurality reference stations to obtain a correction factor; performing a calculation using the two-dimensional horizontal coordinate data, the local pressure data, and the correction factor to calculate an altitude coordinate; and determining an altitude of the mobile navigation unit from the altitude coordinate.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Ingvalson, Michael R. Elgersma, Wayne A. Soehren
  • Publication number: 20120104150
    Abstract: A method to determine roll angle, pitch angle, and heading angle of a spinning projectile during a flight of the spinning projectile is provided. The method includes providing a magnetic unit vector in an inertial frame of the projectile at a projectile launch location prior to launch of the projectile; determining a magnetic unit vector in a body frame and in an inertial frame of the spinning projectile during the flight of the spinning projectile; determining a velocity unit vector in the body frame and in the inertial frame of the spinning projectile during the flight of the spinning projectile; and calculating the roll angle, the pitch angle, and the heading angle of the spinning projectile during the flight of the spinning projectile, regardless of the spin rate of the projectile. The roll angle and the pitch angle of the spinning projectile form an attitude of the spinning projectile.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael R. Elgersma, Vibhor L. Bageshwar
  • Patent number: 8078399
    Abstract: An obstacle-avoidance-processor chip for three-dimensional path planning comprises an analog processing circuit and at least two analog-resistive-grid networks. The analog processing circuit is communicatively coupled to receive data from an inertial measurement unit and from at least one obstacle-detection sensor. The analog processing circuit is configured to construct a three-dimensional obstacle map of an environment based on the received data. The at least two analog-resistive-grid networks are configured to map obstacles in at least two respective non-parallel planes in the constructed three-dimensional obstacle map. The at least two analog-resistive-grid networks form a quasi-three-dimensional representation of the environment. The obstacle-avoidance-processor chip generates information indicative of a three-dimensional unobstructed path in the environment based on the obstacle maps.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 13, 2011
    Assignee: Honeywell International Inc.
    Inventors: Kartik B. Ariyur, Eric Lautenschlager, Michael R. Elgersma
  • Patent number: 7979174
    Abstract: An autonomous vehicle comprises one or more sensors configured to obtain data regarding conditions which affect movement of the autonomous vehicle; a speed planner coupled to the one or more sensors and configured to calculate a desired speed based, at least in part, on the data obtained from the one or more sensors; and one or more actuators responsive to signals from the speed planner and configured to adjust the speed of the autonomous vehicle based on the desired speed calculated by the speed planner.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: July 12, 2011
    Assignee: Honeywell International Inc.
    Inventors: Kingsley O. C. Fregene, Michael R. Elgersma, Samar Dajani-Brown, Stephen G. Pratt
  • Patent number: 7974460
    Abstract: A method and system for obstacle mapping for navigation of an autonomous vehicle is disclosed. The method comprises providing an autonomous vehicle with an image capturing device, and focusing the image capturing device at a predetermined number of different specified distances to capture an image at each of the specified distances. The method further comprises identifying which regions in the captured images are in focus, and assigning a corresponding lens-focus distance to each of the regions that are in focus. A composite image is formed from the captured images, with each of the regions labeled with the corresponding lens-focus distance. A three-dimensional obstacle map is then produced from the composite image. The three-dimensional obstacle map has an x, y, z coordinate system, with x being proportional to pixel horizontal position, y being proportional to pixel vertical position, and z being the lens-focus distance.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: July 5, 2011
    Assignee: Honeywell International Inc.
    Inventor: Michael R. Elgersma
  • Publication number: 20110051120
    Abstract: A range measurement device is disclosed. The device comprises a flash laser radar configured to produce a first laser pulse at a first time. The device receives, at a second time, reflections of the first laser pulse from at least one object within a 360 degree field of view. The device further comprises a timing electronics module, an image sensor in communication with the timing electronics module, a mirror element coupled between the image sensor and the laser radar, and a lens. The mirror element includes a first reflector configured to disperse the reflections of the first laser pulse within at least a portion of the 360 degree field of view and a second reflector configured to collect returning reflections of the first laser pulse from the at least one object into the image sensor. The lens is configured to focus the returning reflections onto the image sensor.
    Type: Application
    Filed: November 9, 2010
    Publication date: March 3, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Randolph G. Hartman, Michael R. Elgersma
  • Patent number: 7852463
    Abstract: A range measurement device is disclosed. The device comprises a flash laser radar configured to produce a first laser pulse at a first time. The device receives, at a second time, reflections of the first laser pulse from at least one object within a 360 degree field of view. The device further comprises a timing electronics module, an image sensor in communication with the timing electronics module, a mirror element coupled between the image sensor and the laser radar, and a lens. The mirror element includes a first reflector configured to disperse the reflections of the first laser pulse within at least a portion of the 360 degree field of view and a second reflector configured to collect returning reflections of the first laser pulse from the at least one object into the image sensor. The lens is configured to focus the returning reflections onto the image sensor.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: December 14, 2010
    Assignee: Honeywell International Inc.
    Inventors: Randolph G. Hartman, Michael R. Elgersma
  • Publication number: 20100121574
    Abstract: A method for collision avoidance of an unmanned aerial vehicle (UAV) with other aircraft such as manned aircraft or another UAV is provided. The method comprises detecting an aircraft approaching a flight path of an unmanned aerial vehicle, and estimating a position, range, and velocity of the aircraft. An estimated path of the aircraft is determined from the position, range, and velocity. A new flight path is then calculated for the unmanned aerial vehicle to a waypoint to avoid the estimated path of the aircraft.
    Type: Application
    Filed: September 5, 2006
    Publication date: May 13, 2010
    Applicant: Honeywell International Inc.
    Inventors: Kartik B. Ariyur, Michael R. Elgersma
  • Patent number: 7693619
    Abstract: A control system of a spacecraft for controlling two or more sets of collinear control moment gyroscopes (CMGs) comprises an attitude control system. The attitude control system is configured to receive a command to adjust an orientation of the spacecraft, determine an offset for a momentum disk for each of the two or more sets of CMGs that maximizes torque, determine a momentum needed from the two or more sets of CMGs to adjust the orientation of the spacecraft, and calculate a total torque needed by taking the derivative of the momentum. The control system further comprises a momentum actuator control processor coupled to the attitude control system, the momentum actuator control processor configured to calculate a required gimbal movement for each of the CMGs in each of the two or more sets of collinear CMGs from total torque.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: April 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Daniel P. Johnson, Mason A. Peck, Brian K. Underhill, Gunter Stein, Blaise G. Morton, Brian J. Hamilton
  • Publication number: 20090319112
    Abstract: An autonomous vehicle comprises one or more sensors configured to obtain data regarding conditions which affect movement of the autonomous vehicle; a speed planner coupled to the one or more sensors and configured to calculate a desired speed based, at least in part, on the data obtained from the one or more sensors; and one or more actuators responsive to signals from the speed planner and configured to adjust the speed of the autonomous vehicle based on the desired speed calculated by the speed planner.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 24, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Kingsley O.C. Fregene, Michael R. Elgersma, Samar Dajani-Brown, Stephen G. Pratt
  • Publication number: 20090228205
    Abstract: An obstacle-avoidance-processor chip for three-dimensional path planning comprises an analog processing circuit and at least two analog-resistive-grid networks. The analog processing circuit is communicatively coupled to receive data from an inertial measurement unit and from at least one obstacle-detection sensor. The analog processing circuit is configured to construct a three-dimensional obstacle map of an environment based on the received data. The at least two analog-resistive-grid networks are configured to map obstacles in at least two respective non-parallel planes in the constructed three-dimensional obstacle map. The at least two analog-resistive-grid networks form a quasi-three-dimensional representation of the environment. The obstacle-avoidance-processor chip generates information indicative of a three-dimensional unobstructed path in the environment based on the obstacle maps.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Kartik B. Ariyur, Eric Lautenschlager, Michael R. Elgersma
  • Publication number: 20090088916
    Abstract: Method and systems of traversing through a domain is provided. One method comprises getting a set of widely spaced waypoints, assigning the next waypoint to be the goal, then using a Laplacian path planner to construct a desired finely detailed path towards the goal, through the domain that avoids boundaries and objects in the domain. Assigning a potential value of v(r)=0 for r on boundaries and obstacles. Assigning a potential value of v(r)=?1 for r on a goal region, wherein the goal is a point on a planned path. Obtaining a numerical solution to the desired path with a Laplace's equation by gridding up the domain with a multi-sized cell grid, wherein the cells near an object are denser then the cells away from the objects. Iteratively setting a potential at each interior point equal to the average of its nearest neighbors and following the numerical solution provided by the Laplace's equation to the goal region.
    Type: Application
    Filed: June 4, 2008
    Publication date: April 2, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael R. Elgersma, Samar Dajani-Brown, Stephen G. Pratt, Kingsley O.C. Fregene, Kartik B. Ariyur
  • Publication number: 20090046270
    Abstract: A range measurement device is disclosed. The device comprises a flash laser radar configured to produce a first laser pulse at a first time. The device receives, at a second time, reflections of the first laser pulse from at least one object within a 360 degree field of view. The device further comprises a timing electronics module, an image sensor in communication with the timing electronics module, a mirror element coupled between the image sensor and the laser radar, and a lens. The mirror element includes a first reflector configured to disperse the reflections of the first laser pulse within at least a portion of the 360 degree field of view and a second reflector configured to collect returning reflections of the first laser pulse from the at least one object into the image sensor. The lens is configured to focus the returning reflections onto the image sensor.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 19, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Randolph G. Hartman, Michael R. Elgersma
  • Patent number: 7486228
    Abstract: A method for compensating for range gate slide with respect to received returns within a radar altimeter is described. The method includes adjusting the amount of overlap between a range gate pulse and a radar return signal until an altitude output by the radar altimeter is within a desired tolerance, and incrementally increasing an amount of attenuation within the receiver circuit of the radar altimeter until the radar altimeter breaks track with the radar return signal. the method also includes recording a signal strength and altitude output at each increment of attenuation, determining an altitude error for each altitude output, and fitting the signal strength data against the altitude error using a plurality of variable length line segments.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: February 3, 2009
    Assignee: Honeywell International Inc.
    Inventors: Michael W. Greenwood, Michael R. Elgersma
  • Patent number: 7464899
    Abstract: A method for avoiding singularities in the movement of CMGs in an array of CMGs in a spacecraft includes a first step where a maneuver command to rotate a spacecraft orientation is received. Then, the torque needed to rotate the spacecraft's orientation is determined. Then, the torque is integrated to determine a momentum path. The momentum path is decomposed into a sequence of straight line segments. For each line segment, a unit vector along the straight line segments is determined. Then, it is determined if there is a continuous path connecting a start point and an end point of the line segment in a plane perpendicular to the unit vector. For each point along the path in the plane perpendicular to the unit vector, a set of gimbal angles is determined.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: December 16, 2008
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Daniel P. Johnson, Gunter Stein, Blaise G. Morton, Dennice F. Gayme, Mason A. Peck