Patents by Inventor Michael R. Kay

Michael R. Kay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190036493
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Patent number: 10193502
    Abstract: A dual-mode envelope tracking (ET) power management circuit is provided. An ET amplifier(s) in the dual-mode ET power management circuit is capable of supporting normal-power user equipment (NPUE) mode and high-power user equipment (HPUE) mode. In the NPUE mode, the ET amplifier(s) amplifies a radio frequency (RF) signal(s) to an NPUE voltage based on a supply voltage for transmission in an NPUE output power. In the HPUE mode, the ET amplifier(s) amplifies the RF signal(s) to an HPUE voltage higher than the NPUE voltage based on a boosted supply voltage higher than the supply voltage for transmission in an HPUE output power higher than the NPUE output power. The ET amplifier(s) maintains a constant load line between the NPUE mode and the HPUE mode. By maintaining the constant load line, it is possible to maintain efficiency of the ET amplifier(s) in both the NPUE mode and the HPUE mode.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 29, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Andrew F. Folkmann, Michael R. Kay, Philippe Gorisse
  • Patent number: 10181826
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: January 15, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Publication number: 20180375475
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Patent number: 10122323
    Abstract: An envelope tracking power supply, which includes a parallel amplifier, switching circuitry, and a parallel switching supply, is disclosed. The envelope tracking power supply provides an envelope power supply signal to a load. The parallel amplifier regulates an envelope power supply voltage of the envelope power supply signal based on a setpoint of the envelope power supply voltage. The switching circuitry at least partially provides the envelope power supply signal via a first inductive element and drives an output current from the parallel amplifier toward zero. The parallel switching supply provides an assist current to further drive the output current from the parallel amplifier toward zero based on an estimate of a current in the first inductive element and an estimate of a current in the load.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: November 6, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Baker Scott, Michael R. Kay
  • Publication number: 20180309414
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Application
    Filed: October 3, 2017
    Publication date: October 25, 2018
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Patent number: 10097145
    Abstract: A multi-mode power management circuit is provided. The multi-mode power management circuit includes a second generation (2G) amplifier circuit(s) configured to amplify a 2G radio frequency (RF) signal for transmission in a 2G RF band(s). The multi-mode power management circuit includes a pair of tracker circuitries coupled to the 2G amplifier circuit. Each tracker circuitry includes a charge pump circuitry configured to generate a voltage and a current. When the 2G amplifier circuit amplifies the 2G RF signal for transmission in the 2G RF band(s), both charge pump circuitries are controlled to provide two currents to the 2G amplifier circuit. As a result, the 2G amplifier circuit is able to amplify the 2G RF signal to a higher power corresponding to a sum of the two currents for transmission in the 2G RF band(s).
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 9, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jeffrey D. Potts, Michael R. Kay, Michael J. Murphy
  • Patent number: 10090762
    Abstract: A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: October 2, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Mohammad Ahsanul Adeeb, Philippe Gorisse, Nadim Khlat, Michael R. Kay
  • Patent number: 10079575
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 18, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Patent number: 10069470
    Abstract: A multi-mode envelope tracking (ET) amplifier circuit is provided. The multi-mode ET amplifier circuit can operate in low-resource block (RB) mode and high-RB mode. The multi-mode ET amplifier circuit includes an ET amplifier(s) to amplify a radio frequency (RF) signal(s) to an amplified voltage, low-RB switcher circuitry to generate a direct current (DC) current, and high-RB switcher circuitry to generate an alternating current (AC) current. The amplified voltage, the DC current, and the AC current collectively cause the RF signal to be transmitted at a determined power. A control circuit(s) activates the high-RB switcher circuitry in the high-RB mode to provide the AC current, thus minimizing AC current sourced from the ET amplifier(s). As a result, it is possible to improve efficiency of the ET amplifier(s) and the multi-mode ET amplifier circuit in the high-RB mode and the low-RB mode.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: September 4, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9979295
    Abstract: A buck-boost DC-DC converter, which includes converter control circuitry, converter switching circuitry, and a first inductive element, is disclosed. The converter control circuitry provides a buck mode timing signal and a boost mode timing signal. The converter switching circuitry provides a switching output signal. During a buck mode of the buck-boost DC-DC converter, when a buck pulse-width of the switching output signal is less than a buck pulse-width threshold, the buck pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. During a boost mode of the buck-boost DC-DC converter, when a boost pulse-width of the switching output signal is less than a boost pulse-width threshold, the boost pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. The first inductive element receives and filters the switching output signal to provide a converter output signal.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: May 22, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Michael R. Kay, Manbir Singh Nag
  • Patent number: 9948240
    Abstract: Dual-output power converter circuitry includes an input node, a first output node, a second output node, a number of capacitive elements, and a number of switching elements. The switching elements are coupled between the input node, the first output node, the second output node, and the capacitive elements. In operation, the switching elements charge and discharge the capacitive elements such that a power supply output voltage is provided asynchronously to the first output node and the second output node.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: April 17, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9929696
    Abstract: A parallel amplifier and an offset capacitance voltage control loop are disclosed. The parallel amplifier has a parallel amplifier output, which is coupled to an envelope tracking power supply output via an offset capacitive element. The offset capacitive element has an offset capacitive voltage. The offset capacitance voltage control loop regulates the offset capacitive voltage, which is adjustable on a communications slot-to-communications slot basis.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 27, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay, Manbir Singh Nag
  • Publication number: 20180048276
    Abstract: A multi-mode envelope tracking (ET) amplifier circuit is provided. The multi-mode ET amplifier circuit can operate in low-resource block (RB) mode and high-RB mode. The multi-mode ET amplifier circuit includes an ET amplifier(s) to amplify a radio frequency (RF) signal(s) to an amplified voltage, low-RB switcher circuitry to generate a direct current (DC) current, and high-RB switcher circuitry to generate an alternating current (AC) current. The amplified voltage, the DC current, and the AC current collectively cause the RF signal to be transmitted at a determined power. A control circuit(s) activates the high-RB switcher circuitry in the high-RB mode to provide the AC current, thus minimizing AC current sourced from the ET amplifier(s). As a result, it is possible to improve efficiency of the ET amplifier(s) and the multi-mode ET amplifier circuit in the high-RB mode and the low-RB mode.
    Type: Application
    Filed: March 15, 2017
    Publication date: February 15, 2018
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9819335
    Abstract: Circuitry, which includes a parallel amplifier and a switching supply, is disclosed. The parallel amplifier regulates a power supply output voltage based on a power supply control signal and provides a current sense signal, which is representative of a parallel amplifier output current from the parallel amplifier. The switching supply is coupled to the parallel amplifier. The switching supply provides a switching output voltage and makes an early determination of the switching output voltage using the current sense signal and the power supply control signal to at least partially compensate for delay in the switching supply. Additionally, the switching supply drives the parallel amplifier output current toward zero using the switching output voltage to increase efficiency.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 14, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Publication number: 20170288612
    Abstract: An envelope tracking power supply, which includes a parallel amplifier, switching circuitry, and a parallel switching supply, is disclosed. The envelope tracking power supply provides an envelope power supply signal to a load. The parallel amplifier regulates an envelope power supply voltage of the envelope power supply signal based on a setpoint of the envelope power supply voltage. The switching circuitry at least partially provides the envelope power supply signal via a first inductive element and drives an output current from the parallel amplifier toward zero. The parallel switching supply provides an assist current to further drive the output current from the parallel amplifier toward zero based on an estimate of a current in the first inductive element and an estimate of a current in the load.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 5, 2017
    Inventors: Nadim Khlat, Baker Scott, Michael R. Kay
  • Publication number: 20170250653
    Abstract: A dual-mode envelope tracking (ET) power management circuit is provided. An ET amplifier(s) in the dual-mode ET power management circuit is capable of supporting normal-power user equipment (NPUE) mode and high-power user equipment (HPUE) mode. In the NPUE mode, the ET amplifier(s) amplifies a radio frequency (RF) signal(s) to an NPUE voltage based on a supply voltage for transmission in an NPUE output power. In the HPUE mode, the ET amplifier(s) amplifies the RF signal(s) to an HPUE voltage higher than the NPUE voltage based on a boosted supply voltage higher than the supply voltage for transmission in an HPUE output power higher than the NPUE output power. The ET amplifier(s) maintains a constant load line between the NPUE mode and the HPUE mode. By maintaining the constant load line, it is possible to maintain efficiency of the ET amplifier(s) in both the NPUE mode and the HPUE mode.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 31, 2017
    Inventors: Nadim Khlat, Andrew F. Folkmann, Michael R. Kay, Philippe Gorisse
  • Publication number: 20170207705
    Abstract: A buck-boost DC-DC converter, which includes converter control circuitry, converter switching circuitry, and a first inductive element, is disclosed. The converter control circuitry provides a buck mode timing signal and a boost mode timing signal. The converter switching circuitry provides a switching output signal. During a buck mode of the buck-boost DC-DC converter, when a buck pulse-width of the switching output signal is less than a buck pulse-width threshold, the buck pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. During a boost mode of the buck-boost DC-DC converter, when a boost pulse-width of the switching output signal is less than a boost pulse-width threshold, the boost pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. The first inductive element receives and filters the switching output signal to provide a converter output signal.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Michael R. Kay, Manbir Singh Nag
  • Publication number: 20170179888
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 22, 2017
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Patent number: 9634620
    Abstract: The present disclosure relates to envelope tracking with reduced circuit area and power consumption. In one embodiment, an envelope power converter includes a switching power converter configured to receive a supply voltage and provide an output based on a switching control signal. A holding inductor is coupled between the switching power converter and envelope power supply output node. An offset capacitor is coupled between the envelope power supply output node and control node. In response to a target envelope power supply output voltage, a control circuit is configured to generate the switching control signal and a control voltage to maintain envelope power supply signal at target voltage level. The control circuit is configured to generate switching control signal and control voltage such that supply voltage is provided by switching power converter to holding inductor and offset capacitor is charged to target level without changing voltage of envelope power supply signal.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: April 25, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay