Patents by Inventor Michael R. Leners

Michael R. Leners has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11197996
    Abstract: A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Ronald A. Drake, Xin Chen, Michael R. Leners, Lonnie D. Ronning, Lester O. Stener, Matthew D. Bonner, Jean M. Carver, Brian P. Colin, Alexander R. Mattson, Kathryn Hilpisch, Vladimir Grubac
  • Publication number: 20210106838
    Abstract: A medical device includes an elongated body having a proximal end and a distal end and a braided tubular body extending coaxially with the elongated body between the proximal and distal ends. The braided tubular body includes multiple cables extending helically in opposing directions in an interwoven manner. Each cable includes multiple, electrically conductive filars. In some examples, each filar includes an electrically insulating coating or layer.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 15, 2021
    Inventors: Jesse J. Pischlar, Kenneth C. Gardeski, Michael R. Leners, Peter B. McIntyre
  • Publication number: 20190298989
    Abstract: A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Inventors: Kenneth C. GARDESKI, Ronald A. DRAKE, Xin CHEN, Michael R. LENERS, Lonnie D. RONNING, Lester O. STENER, Matthew D. BONNER, Jean M. CARVER, Brian P. COLIN, Alexander R. MATTSON, Kathryn HILPISCH, Vladimir GRUBAC
  • Patent number: 10357647
    Abstract: A method and device for implanting a medical lead. The device includes an elongate shaft defining a major longitudinal axis and including a proximal end and a distal end. A necked portion coupled to and extending from the distal end is included, the necked portion defines a first thickness and a substantially planar surface, the necked portion being at least resiliently movable in a direction normal to the major longitudinal axis. A tip disposed at the distal end of the necked portion is included, the tip defining a second thickness greater than the first thickness.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: July 23, 2019
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, James K. Carney, Melissa G. T. Christie, Michael R. Leners, Lonnie D. Ronning, Amy E. Thompson-Nauman
  • Patent number: 9788981
    Abstract: A delivery tool of a system for deploying medical diagnostics and/or therapy includes a deployment member and a sheath. An elastic cantilever element secured to a tubular sidewall of the deployment member, in proximity to a distal opening of a lumen formed by the sidewall, is spring biased to extend outward from the sidewall. When the cantilever element is received within the sheath, a sheath sidewall pushes the cantilever element inward, against the spring bias thereof, and a radius of curvature of the cantilever element approximately conforms to that of an outer surface of the deployment member sidewall. A helical track for receiving passage of a medical device helix fixation element therein may extend around a perimeter of the deployment member lumen, wherein a distal terminal end of the track is located in close proximity to the distal opening and generally opposite a free end of the cantilever element.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: October 17, 2017
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Nathan A. Grenz, Xiaonan Shen, Michael R. Leners, Lonnie D. Ronning
  • Publication number: 20160143758
    Abstract: A delivery tool of a system for deploying medical diagnostics and/or therapy includes a deployment member and a sheath. An elastic cantilever element secured to a tubular sidewall of the deployment member, in proximity to a distal opening of a lumen formed by the sidewall, is spring biased to extend outward from the sidewall. When the cantilever element is received within the sheath, a sheath sidewall pushes the cantilever element inward, against the spring bias thereof, and a radius of curvature of the cantilever element approximately conforms to that of an outer surface of the deployment member sidewall. A helical track for receiving passage of a medical device helix fixation element therein may extend around a perimeter of the deployment member lumen, wherein a distal terminal end of the track is located in close proximity to the distal opening and generally opposite a free end of the cantilever element.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 26, 2016
    Inventors: Kenneth C. GARDESKI, Nathan A. GRENZ, Xiaonan SHEN, Michael R. LENERS, Lonnie D. RONNING
  • Publication number: 20150343197
    Abstract: A method and device for implanting a medical lead. The device includes an elongate shaft defining a major longitudinal axis and including a proximal end and a distal end. A necked portion coupled to and extending from the distal end is included, the necked portion defines a first thickness and a substantially planar surface, the necked portion being at least resiliently movable in a direction normal to the major longitudinal axis.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 3, 2015
    Applicant: Medtronic, Inc.
    Inventors: Kenneth C. GARDESKI, James K. CARNEY, Melissa G.T. CHRISTIE, Michael R. LENERS, Lonnie D. RONNING, Amy E. THOMPSON-NAUMAN
  • Patent number: 8509916
    Abstract: Bilumen catheters and methods of using same for facilitating implantation of cardiac leads for applying electrical stimulation to and/or sensing electrical activity of the heart through one or more electrode positioned at an implantation site within a heart chamber or cardiac vessel adjacent a heart chamber, and more particularly to a method and apparatus for introducing such a cardiac lead having low torqueability and pushability through a tortuous pathway to enable attachment of the cardiac lead at the implantation site employing a bilumen guide catheter are disclosed. The bilumen catheter body includes a relatively large diameter delivery lumen to introduce a small diameter cardiac lead and a small diameter guide lumen to receive a stylet or guidewire to locate the guide catheter body distal end at the implantation site. The small diameter lumen within a small diameter guide tube extends distally from the delivery exit port of the delivery lumen.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: August 13, 2013
    Assignee: Medtronic, Inc.
    Inventors: Charles L. Byrd, Kenneth C. Gardeski, Michael R. Leners, Linda L. Lach, Ralph J. Thomas, Jesse T. Torbert, James F. Kelley
  • Patent number: 7130700
    Abstract: A splined multilumen body for use in elongated medical devices is provided for carrying multiple conductors, wires or cables to multiple device components along the device body. Open lumens may be provided through which medical devices or therapies may be delivered. The multilumen body is constructed from a generally tubular outer member having inward-radiating splines that mate with outward-radiating splines on a generally tubular inner member. Lumens formed between sets of mated splines isolate conductors carried therein. Interaction of mated splines provides good torque transfer between outer and inner members. Materials for fabricating outer and inner members may be selected to achieve desired torque transfer properties, flexibility, and surface friction.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: October 31, 2006
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Michael R. Leners
  • Patent number: 7037290
    Abstract: Elongated medical devices are disclosed adapted to be inserted through an access pathway into a body vessel, organ or cavity to locate a therapeutic or diagnostic distal segment of the elongated medical device into alignment with an anatomic feature of interest. Multi-lumen steerable catheters having a deflection lumen liner and a delivery lumen liner are adapted to be deflected by a deflection mechanism within or advanced through the deflection lumen liner to enable advancement of the catheter distal end through a tortuous pathway. At least one lumen liner is formed of a no yield elastomer.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: May 2, 2006
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Michael R. Leners, Jesse T. Torbert, Ralph J. Thomas
  • Publication number: 20040116848
    Abstract: Elongated medical devices are disclosed adapted to be inserted through an access pathway into a body vessel, organ or cavity to locate a therapeutic or diagnostic distal segment of the elongated medical device into alignment with an anatomic feature of interest. Multi-lumen steerable catheters having a deflection lumen liner and a delivery lumen liner are adapted to be deflected by a deflection mechanism within or advanced through the deflection lumen liner to enable advancement of the catheter distal end through a tortuous pathway. At least one lumen liner is formed of a no yield elastomer.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Kenneth C. Gardeski, Michael R. Leners, Jesse T. Torbert, Ralph J. Thomas
  • Publication number: 20040116878
    Abstract: Bilumen catheters and methods of using same for facilitating implantation of cardiac leads for applying electrical stimulation to and/or sensing electrical activity of the heart through one or more electrode positioned at an implantation site within a heart chamber or cardiac vessel adjacent a heart chamber, and more particularly to a method and apparatus for introducing such a cardiac lead having low torqueability and pushability through a tortuous pathway to enable attachment of the cardiac lead at the implantation site employing a bilumen guide catheter are disclosed. The bilumen catheter body includes a relatively large diameter delivery lumen to introduce a small diameter cardiac lead and a small diameter guide lumen to receive a stylet or guidewire to locate the guide catheter body distal end at the implantation site. The small diameter lumen within a small diameter guide tube extends distally from the delivery exit port of the delivery lumen.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Charles L. Byrd, Kenneth C. Gardeski, Michael R. Leners, Linda L. Lach, Ralph J. Thomas, Jesse T. Torbert, James F. Kelley
  • Publication number: 20040097965
    Abstract: A splined multilumen body for use in elongated medical devices is provided for carrying multiple conductors, wires or cables to multiple device components along the device body. Open lumens may be provided through which medical devices or therapies may be delivered. The multilumen body is constructed from a generally tubular outer member having inward-radiating splines that mate with outward-radiating splines on a generally tubular inner member. Lumens formed between sets of mated splines isolate conductors carried therein. Interaction of mated splines provides good torque transfer between outer and inner members. Materials for fabricating outer and inner members may be selected to achieve desired torque transfer properties, flexibility, and surface friction.
    Type: Application
    Filed: November 19, 2002
    Publication date: May 20, 2004
    Inventors: Kenneth C. Gardeski, Michael R. Leners