Patents by Inventor Michael R. Page

Michael R. Page has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12347914
    Abstract: A nonreciprocal microwave transmission device includes a substrate, a transducer on a surface of the substrate and configured to reciprocally convert between electrical signals to acoustic waves, a first piezoelectric material configured to generates and transports acoustic waves from a signal applied to the transducer, and a thin film magnetic material configured to couple to acoustic waves through magnetoelastic coupling so as to have non-reciprocal magnetoelastic coupled acoustic wave transport. Transmission of acoustic waves through the thin film magnetic material is in a direction toward the transducer has a first magnitude and transmission of acoustic waves through the thin film magnetic material in a direction away from the transducer has a second magnitude, the first and second magnitude being significantly different.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: July 1, 2025
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Michael R Page, Piyush J Shah, Derek A Bas
  • Publication number: 20230336144
    Abstract: A nonreciprocal microwave phase shifter or circulator includes a substrate, a transducer on a surface of the substrate and configured to reciprocally convert between electrical signals to acoustic waves, a first piezoelectric material configured to generate and transport acoustic waves from a signal applied to the transducer, and a thin film magnetic material configured to couple to acoustic waves through magnetoelastic coupling so as to have nonreciprocal magnetoelastic coupled acoustic wave transport. Phase shifts of acoustic waves through the thin film magnetic material in directions toward and away the transducer have significantly different magnitudes.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Inventors: Michael R. Page, Derek A. Bas, Piyush J. Shah, Michael J. Newburger, Michael E. McConney, Amber N. Reed
  • Publication number: 20220367998
    Abstract: A nonreciprocal microwave transmission device includes a substrate, a transducer on a surface of the substrate and configured to reciprocally convert between electrical signals to acoustic waves, a first piezoelectric material configured to generates and transports acoustic waves from a signal applied to the transducer, and a thin film magnetic material configured to couple to acoustic waves through magnetoelastic coupling so as to have non-reciprocal magnetoelastic coupled acoustic wave transport. Transmission of acoustic waves through the thin film magnetic material is in a direction toward the transducer has a first magnitude and transmission of acoustic waves through the thin film magnetic material in a direction away from the transducer has a second magnitude, the first and second magnitude being significantly different.
    Type: Application
    Filed: April 11, 2022
    Publication date: November 17, 2022
    Inventors: Michael R Page, Piyush J Shah, Derek A Bas
  • Patent number: 10601400
    Abstract: A filter including a piezoelectric substrate; a surface acoustic wave (SAW) device on the piezoelectric substrate and including unequally spaced interdigitated input and output transducer electrodes of unequal widths, wherein the input transducer electrodes are to convert an incoming radio frequency (RF) electrical signal into surface acoustic waves; a SAW propagation path between the input and output transducer electrodes; and a magnetostrictive film in the SAW propagation path to filter the surface acoustic waves that are at a ferromagnetic resonance frequency of the magnetostrictive film, wherein the output transducer electrodes are to convert the filtered surface acoustic waves into an outgoing electrical RF signal. The SAW device may operate in a wide-band pass configuration. The wide-band pass configuration result in a transmission of frequencies up to ?60 dB. The magnetostrictive film may include a ferromagnetic material.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 24, 2020
    Inventors: Michael E. McConney, Brandon M. Howe, Piyush Shah, Michael R. Page