Patents by Inventor Michael Ray Lange

Michael Ray Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960156
    Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: April 16, 2024
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Michael Ray Lange, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
  • Publication number: 20210278710
    Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 9, 2021
    Inventors: MICHAEL RAY LANGE, RANDALL K. MORSE, CATHERYN D. LOGAN, CURTIS R. NIEMEIER, DEAN A. HEIMMERMANN, PETER A. WASILOUSKY, CHRISTOPHER A. COREY, LEE MARTIN BURBERRY
  • Patent number: 11042052
    Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 22, 2021
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Michael Ray Lange, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
  • Publication number: 20200089028
    Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Inventors: MICHAEL RAY LANGE, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
  • Patent number: 8708576
    Abstract: An electro-optical device may include a substrate having opposing first and second surfaces and an opening extending therebetween. The optical device may also include an optical waveguide extending laterally along the first surface and having an end aligned with the opening, and an electro-optical component carried by the second surface and aligned with the opening. The electro-optical device may further include an elastomeric body within the opening and having a first end face adjacent the optical waveguide and having a second end face adjacent the electro-optical component. The elastomeric body and the optical waveguide may have respective gradient refraction indices within ±5% of each other.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Harris Corporation
    Inventors: Lawrence Wayne Shacklette, Michael Ray Lange, Michael Raymond Weatherspoon, Gary M. Singer
  • Publication number: 20120189253
    Abstract: An electro-optical device may include a substrate having opposing first and second surfaces and an opening extending therebetween. The optical device may also include an optical waveguide extending laterally along the first surface and having an end aligned with the opening, and an electro-optical component carried by the second surface and aligned with the opening. The electro-optical device may further include an elastomeric body within the opening and having a first end face adjacent the optical waveguide and having a second end face adjacent the electro-optical component. The elastomeric body and the optical waveguide may have respective gradient refraction indices within ±5% of each other.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: Harris Corporation
    Inventors: Lawrence Wayne Shacklette, Michael Ray Lange, Michael Raymond Weatherspoon, Gary M. Singer
  • Patent number: 6741364
    Abstract: An apparatus for determining relative positioning of first and second objects being relatively movable may include a laser source carried by the first object for generating a source laser beam toward the second object, and a target optical element carried by the second object for generating a first reflected beam and a second diverging reflected beam from the source laser beam. Furthermore, a detector may be carried by the first object for detecting the first reflected beam and the second diverging reflected beam. A controller may also be connected to the detector for determining a range between the detector and target optical element based upon a size of the second diverging reflected beam. The controller may also determine at least one other positional degree of freedom quantity (e.g., lateral/vertical displacement, pitch angle, yaw angle, and/or roll angle) based upon the first reflected beam and the second diverging reflected beam.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: May 25, 2004
    Assignee: Harris Corporation
    Inventors: Michael Ray Lange, Robert M. Montgomery
  • Publication number: 20040032596
    Abstract: An apparatus for determining relative positioning of first and second objects being relatively movable may include a laser source carried by the first object for generating a source laser beam toward the second object, and a target optical element carried by the second object for generating a first reflected beam and a second diverging reflected beam from the source laser beam. Furthermore, a detector may be carried by the first object for detecting the first reflected beam and the second diverging reflected beam. A controller may also be connected to the detector for determining a range between the detector and target optical element based upon a size of the second diverging reflected beam. The controller may also determine at least one other positional degree of freedom quantity (e.g., lateral/vertical displacement, pitch angle, yaw angle, and/or roll angle) based upon the first reflected beam and the second diverging reflected beam.
    Type: Application
    Filed: August 13, 2002
    Publication date: February 19, 2004
    Applicant: Harris Corporation
    Inventors: Michael Ray Lange, Robert M. Montgomery
  • Patent number: 6594420
    Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A physically compact, focusing and coupling structure couples into respective light amplifying waveguide channels of a substrate, to which the fibers of the multi-fiber ribbon are coupled, the optical pumping energy emitted by multiple pumping energy sources that are arranged generally transverse to the optical waveguide amplifying channels. The pumping energy coupling structure may include a prism, GRIN lens array or a spherical lenslet array. The number of GRIN lenses or lenslets corresponds to the number of pumping source elements, to provide one-for-one collimation or focusing of the light beams generated by the pumping energy emitters into the optical waveguide channels.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: July 15, 2003
    Assignee: Harris Corporation
    Inventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
  • Patent number: 6483705
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 19, 2002
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
  • Patent number: 6462864
    Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A dual substrate structure contains a first substrate having a signal transport core laminated with a second substrate having an associated pumping energy-receiving, pseudo-cladding layer. This use of separate substrates prevents dopant material of the signal transport core from intruding into the pseudo-cladding material. The bulk layers are polished and laminated so that the signal transport core is in intimate face-to-face abutment with the pseudo-cladding layer. The back side of the bulk containing the pseudo-cladding material is lapped and polished to expose pseudo-cladding material, and provide a generally planar surface that facilitates coupling of the pseudo-cladding layer (and its abutting core) with a pumping energy source.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 8, 2002
    Assignee: Harris Corporation
    Inventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
  • Publication number: 20020131237
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.
    Type: Application
    Filed: March 19, 2001
    Publication date: September 19, 2002
    Applicant: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
  • Patent number: 6418019
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a plurality of cooling fluid dissociation electrodes carried by the cooling substrate for dissociating cooling fluid to control a pressure thereof. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: July 9, 2002
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
  • Publication number: 20020075559
    Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a compact form factor for coupling to a multi-fiber ribbon. A single clad fiber is pulled to a prescribed diameter based upon the geometry and dimensions of the inner clad of a clad-pumped fiber. The single clad fiber is affixed in a V-shaped groove in a waveguide substrate, by optical fiber bonding epoxy back-filled in the groove, and which wicks around the single clad fiber. After the epoxy cures, any fiber and epoxy above the substrate are removed down to its surface.
    Type: Application
    Filed: February 16, 2001
    Publication date: June 20, 2002
    Applicant: Harris Corporation
    Inventors: Michael Ray Lange, Michael O' Reilly, Charles E. Bryant
  • Patent number: 6407852
    Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a compact form factor for coupling to a multi-fiber ribbon. A single clad fiber is pulled to a prescribed diameter based upon the geometry and dimensions of the inner clad of a clad-pumped fiber. The single clad fiber is affixed in a V-shaped groove in a waveguide substrate, by optical fiber bonding epoxy back-filled in the groove, and which wicks around the single clad fiber. After the epoxy cures, any fiber and epoxy above the substrate are removed down to its surface.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: June 18, 2002
    Assignee: Harris Corporation
    Inventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
  • Publication number: 20020021486
    Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A dual substrate structure contains a first substrate having a signal transport core laminated with a second substrate having an associated pumping energy-receiving, pseudo-cladding layer. This use of separate substrates prevents dopant material of the signal transport core from intruding into the pseudo-cladding material. The bulk layers are polished and laminated so that the signal transport core is in intimate face-to-face abutment with the pseudo-cladding layer. The back side of the bulk containing the pseudo-cladding material is lapped and polished to expose pseudo-cladding material, and provide a generally planar surface that facilitates coupling of the pseudo-cladding layer (and its abutting core) with a pumping energy source.
    Type: Application
    Filed: February 16, 2001
    Publication date: February 21, 2002
    Applicant: Harris Corporation
    Inventors: Michael Ray Lange, Michael O' Reilly, Charles E. Bryant