Patents by Inventor Michael Ray Lange
Michael Ray Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11960156Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.Type: GrantFiled: May 19, 2021Date of Patent: April 16, 2024Assignee: EAGLE TECHNOLOGY, LLCInventors: Michael Ray Lange, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
-
Publication number: 20210278710Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.Type: ApplicationFiled: May 19, 2021Publication date: September 9, 2021Inventors: MICHAEL RAY LANGE, RANDALL K. MORSE, CATHERYN D. LOGAN, CURTIS R. NIEMEIER, DEAN A. HEIMMERMANN, PETER A. WASILOUSKY, CHRISTOPHER A. COREY, LEE MARTIN BURBERRY
-
Patent number: 11042052Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.Type: GrantFiled: September 18, 2018Date of Patent: June 22, 2021Assignee: EAGLE TECHNOLOGY, LLCInventors: Michael Ray Lange, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
-
Publication number: 20200089028Abstract: A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.Type: ApplicationFiled: September 18, 2018Publication date: March 19, 2020Inventors: MICHAEL RAY LANGE, Randall K. Morse, Catheryn D. Logan, Curtis R. Niemeier, Dean A. Heimmermann, Peter A. Wasilousky, Christopher A. Corey, Lee Martin Burberry
-
Patent number: 8708576Abstract: An electro-optical device may include a substrate having opposing first and second surfaces and an opening extending therebetween. The optical device may also include an optical waveguide extending laterally along the first surface and having an end aligned with the opening, and an electro-optical component carried by the second surface and aligned with the opening. The electro-optical device may further include an elastomeric body within the opening and having a first end face adjacent the optical waveguide and having a second end face adjacent the electro-optical component. The elastomeric body and the optical waveguide may have respective gradient refraction indices within ±5% of each other.Type: GrantFiled: January 20, 2011Date of Patent: April 29, 2014Assignee: Harris CorporationInventors: Lawrence Wayne Shacklette, Michael Ray Lange, Michael Raymond Weatherspoon, Gary M. Singer
-
Publication number: 20120189253Abstract: An electro-optical device may include a substrate having opposing first and second surfaces and an opening extending therebetween. The optical device may also include an optical waveguide extending laterally along the first surface and having an end aligned with the opening, and an electro-optical component carried by the second surface and aligned with the opening. The electro-optical device may further include an elastomeric body within the opening and having a first end face adjacent the optical waveguide and having a second end face adjacent the electro-optical component. The elastomeric body and the optical waveguide may have respective gradient refraction indices within ±5% of each other.Type: ApplicationFiled: January 20, 2011Publication date: July 26, 2012Applicant: Harris CorporationInventors: Lawrence Wayne Shacklette, Michael Ray Lange, Michael Raymond Weatherspoon, Gary M. Singer
-
Patent number: 6741364Abstract: An apparatus for determining relative positioning of first and second objects being relatively movable may include a laser source carried by the first object for generating a source laser beam toward the second object, and a target optical element carried by the second object for generating a first reflected beam and a second diverging reflected beam from the source laser beam. Furthermore, a detector may be carried by the first object for detecting the first reflected beam and the second diverging reflected beam. A controller may also be connected to the detector for determining a range between the detector and target optical element based upon a size of the second diverging reflected beam. The controller may also determine at least one other positional degree of freedom quantity (e.g., lateral/vertical displacement, pitch angle, yaw angle, and/or roll angle) based upon the first reflected beam and the second diverging reflected beam.Type: GrantFiled: August 13, 2002Date of Patent: May 25, 2004Assignee: Harris CorporationInventors: Michael Ray Lange, Robert M. Montgomery
-
Publication number: 20040032596Abstract: An apparatus for determining relative positioning of first and second objects being relatively movable may include a laser source carried by the first object for generating a source laser beam toward the second object, and a target optical element carried by the second object for generating a first reflected beam and a second diverging reflected beam from the source laser beam. Furthermore, a detector may be carried by the first object for detecting the first reflected beam and the second diverging reflected beam. A controller may also be connected to the detector for determining a range between the detector and target optical element based upon a size of the second diverging reflected beam. The controller may also determine at least one other positional degree of freedom quantity (e.g., lateral/vertical displacement, pitch angle, yaw angle, and/or roll angle) based upon the first reflected beam and the second diverging reflected beam.Type: ApplicationFiled: August 13, 2002Publication date: February 19, 2004Applicant: Harris CorporationInventors: Michael Ray Lange, Robert M. Montgomery
-
Patent number: 6594420Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A physically compact, focusing and coupling structure couples into respective light amplifying waveguide channels of a substrate, to which the fibers of the multi-fiber ribbon are coupled, the optical pumping energy emitted by multiple pumping energy sources that are arranged generally transverse to the optical waveguide amplifying channels. The pumping energy coupling structure may include a prism, GRIN lens array or a spherical lenslet array. The number of GRIN lenses or lenslets corresponds to the number of pumping source elements, to provide one-for-one collimation or focusing of the light beams generated by the pumping energy emitters into the optical waveguide channels.Type: GrantFiled: July 28, 2000Date of Patent: July 15, 2003Assignee: Harris CorporationInventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
-
Patent number: 6483705Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.Type: GrantFiled: March 19, 2001Date of Patent: November 19, 2002Assignee: Harris CorporationInventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
-
Patent number: 6462864Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A dual substrate structure contains a first substrate having a signal transport core laminated with a second substrate having an associated pumping energy-receiving, pseudo-cladding layer. This use of separate substrates prevents dopant material of the signal transport core from intruding into the pseudo-cladding material. The bulk layers are polished and laminated so that the signal transport core is in intimate face-to-face abutment with the pseudo-cladding layer. The back side of the bulk containing the pseudo-cladding material is lapped and polished to expose pseudo-cladding material, and provide a generally planar surface that facilitates coupling of the pseudo-cladding layer (and its abutting core) with a pumping energy source.Type: GrantFiled: February 16, 2001Date of Patent: October 8, 2002Assignee: Harris CorporationInventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
-
Publication number: 20020131237Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.Type: ApplicationFiled: March 19, 2001Publication date: September 19, 2002Applicant: Harris CorporationInventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
-
Patent number: 6418019Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a plurality of cooling fluid dissociation electrodes carried by the cooling substrate for dissociating cooling fluid to control a pressure thereof. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber.Type: GrantFiled: March 19, 2001Date of Patent: July 9, 2002Assignee: Harris CorporationInventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
-
Publication number: 20020075559Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a compact form factor for coupling to a multi-fiber ribbon. A single clad fiber is pulled to a prescribed diameter based upon the geometry and dimensions of the inner clad of a clad-pumped fiber. The single clad fiber is affixed in a V-shaped groove in a waveguide substrate, by optical fiber bonding epoxy back-filled in the groove, and which wicks around the single clad fiber. After the epoxy cures, any fiber and epoxy above the substrate are removed down to its surface.Type: ApplicationFiled: February 16, 2001Publication date: June 20, 2002Applicant: Harris CorporationInventors: Michael Ray Lange, Michael O' Reilly, Charles E. Bryant
-
Patent number: 6407852Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a compact form factor for coupling to a multi-fiber ribbon. A single clad fiber is pulled to a prescribed diameter based upon the geometry and dimensions of the inner clad of a clad-pumped fiber. The single clad fiber is affixed in a V-shaped groove in a waveguide substrate, by optical fiber bonding epoxy back-filled in the groove, and which wicks around the single clad fiber. After the epoxy cures, any fiber and epoxy above the substrate are removed down to its surface.Type: GrantFiled: February 16, 2001Date of Patent: June 18, 2002Assignee: Harris CorporationInventors: Michael Ray Lange, Michael O'Reilly, Charles E. Bryant
-
Publication number: 20020021486Abstract: A multi-fiber ribbon-coupled multi-channel, optical amplifier architecture has a very compact form factor that facilitates one-for-one alignment with and coupling to each optical fiber of a multi-fiber ribbon. A dual substrate structure contains a first substrate having a signal transport core laminated with a second substrate having an associated pumping energy-receiving, pseudo-cladding layer. This use of separate substrates prevents dopant material of the signal transport core from intruding into the pseudo-cladding material. The bulk layers are polished and laminated so that the signal transport core is in intimate face-to-face abutment with the pseudo-cladding layer. The back side of the bulk containing the pseudo-cladding material is lapped and polished to expose pseudo-cladding material, and provide a generally planar surface that facilitates coupling of the pseudo-cladding layer (and its abutting core) with a pumping energy source.Type: ApplicationFiled: February 16, 2001Publication date: February 21, 2002Applicant: Harris CorporationInventors: Michael Ray Lange, Michael O' Reilly, Charles E. Bryant