Patents by Inventor Michael Reffle

Michael Reffle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10707965
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: July 7, 2020
    Assignee: Infinera Corporation
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Klsh, Jr., Donald J. Pavinski, Jie Tang, David Coult
  • Publication number: 20190280798
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise.
    Type: Application
    Filed: November 13, 2018
    Publication date: September 12, 2019
    Inventors: Jeffrey T. Rahn, Fred A. Kish, Michael Reffle, Peter W. Evans, Vikrant Lal
  • Publication number: 20190158183
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 23, 2019
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Klsh, Donald J. Pavinski, Jie Tang, David Coult
  • Publication number: 20190103937
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Jeffrey T. Rahn, Fred A. Kish, JR., Michael Reffle, Peter W. Evans, Vikrant Lal
  • Publication number: 20190089476
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
    Type: Application
    Filed: November 15, 2018
    Publication date: March 21, 2019
    Inventors: Fred A. Kish, JR., Michael Reffle, Jeffrey T. Rahn, John Osenbach, Timothy Butrie, Xiaofeng Han, Mark Missey, Mehrdad Ziari, Peter w. Evans
  • Publication number: 20190089475
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
    Type: Application
    Filed: November 15, 2018
    Publication date: March 21, 2019
    Inventors: Fred A. Kish, JR., Michael Reffle, Jeffrey T. Rahn, John Osenbach, Timothy Butrie, Xiaofeng Han, Mark Missey, Mehrdad Ziari, Peter W. Evans
  • Publication number: 20190081724
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 14, 2019
    Inventors: Jeffrey T. Rahn, Fred A. Kish, Michael Reffle, Peter W. Evans, Vikrant Lal
  • Patent number: 10211925
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 19, 2019
    Assignee: Infinera Corporation
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Jr., Donald J. Pavinski, Jie Tang, David Coult
  • Publication number: 20180351684
    Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides. In addition, wavelength locker (WLL) circuitry may be provided on the PIC.
    Type: Application
    Filed: November 15, 2017
    Publication date: December 6, 2018
    Inventors: John Osenbach, Jiaming Zhang, Jie Tang, Timothy Butrie, Michael Reffle, Fred A. Kish, JR., Perter W. Evans
  • Publication number: 20180138981
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Donald J. Pavinski, Jie Tang, David Coult
  • Patent number: 9876575
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 23, 2018
    Assignee: Infinera Corporation
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Jr., Donald J. Pavinski, Jie Tang, David Coult
  • Patent number: 9784933
    Abstract: A device may include a first substrate. The device may include an optical source. The optical source may generate light when a voltage or current is applied to the optical source. The optical source may be being provided on a first region of the first substrate. The device may include a second substrate. A second region of the second substrate may form a cavity with the first region of the first substrate. The optical source may extend into the cavity. The device may include an optical interconnect. The optical interconnect may be provided on or in the second substrate and outside the cavity. The optical interconnect may be configured to receive the light from the optical source.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: October 10, 2017
    Assignee: Infinera Corporation
    Inventors: John W. Osenbach, Timothy Butrie, Fred A. Kish, Jr., Michael Reffle
  • Publication number: 20160178861
    Abstract: A device may include a first substrate. The device may include an optical source. The optical source may generate light when a voltage or current is applied to the optical source. The optical source may be being provided on a first region of the first substrate. The device may include a second substrate. A second region of the second substrate may form a cavity with the first region of the first substrate. The optical source may extend into the cavity. The device may include an optical interconnect. The optical interconnect may be provided on or in the second substrate and outside the cavity. The optical interconnect may be configured to receive the light from the optical source.
    Type: Application
    Filed: April 17, 2015
    Publication date: June 23, 2016
    Inventors: John W. OSENBACH, Timothy Butrie, Fred A. Kish, JR., Michael Reffle
  • Publication number: 20150318952
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 5, 2015
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, JR., Donald J. Pavinski, Jie Tang, David Coult
  • Patent number: 8213802
    Abstract: An optical receiver includes a first substrate including a demultiplexer and a first optical waveguide array. An input of the demultiplexer is configured to receive a wavelength division multiplexed optical input signal having a plurality of channels. Each of the plurality of channels corresponds to one of a plurality of wavelengths. Each of the plurality of outputs is configured to supply a corresponding one of the plurality of channels. The first optical waveguide array has a plurality of inputs. Each of the inputs of the first optical waveguide array is configured to receive a corresponding one of the plurality of channels. A second substrate is in signal communication with the first substrate and includes an optical detector array. The optical detector array has a plurality of inputs, each of which is configured to receive a corresponding one of the plurality of channels and generate an electrical signal in response thereto.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: July 3, 2012
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, Wei Chen, John V. Hryniewicz, Sai T. Chu, Jeff Rahn, Mehrdad Ziari, Timothy Butrie, Michael Reffle, Fred A. Kish, Jr., Charles H. Joyner
  • Publication number: 20090245801
    Abstract: An optical receiver includes a first substrate including a demultiplexer and a first optical waveguide array. An input of the demultiplexer is configured to receive a wavelength division multiplexed optical input signal having a plurality of channels. Each of the plurality of channels corresponds to one of a plurality of wavelengths. Each of the plurality of outputs is configured to supply a corresponding one of the plurality of channels. The first optical waveguide array has a plurality of inputs. Each of the inputs of the first optical waveguide array is configured to receive a corresponding one of the plurality of channels. A second substrate is in signal communication with the first substrate and includes an optical detector array. The optical detector array has a plurality of inputs, each of which is configured to receive a corresponding one of the plurality of channels and generate an electrical signal in response thereto.
    Type: Application
    Filed: December 30, 2008
    Publication date: October 1, 2009
    Inventors: Brent E. Little, Wei Chen, John V. Hryniewicz, Sai T. Chu, Jeff Rahn, Mehrdad Ziari, Timothy Butrie, Michael Reffle, Fred A. Kish, JR., Charles H. Joyner